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Abstract. The Cross Method was very used for analysis of structures, this was to the agility of the method. But he 

lose his use by the limitations of metho, such as transversal displacements. So, a general method was proposed, 

able of analyzing structures with transversal displacements and have the classical method as a particular case. The 

methods found to get these objective was to use displacement method and Gauss-Seidel approximation together 

and compare with the classical method. The results showed the Gauss-Seidel approximation was able to obtain an 

approximate solution to for structures with transverse displacements maintaining part of the agility of the 

traditional method. With these results, can be concluded that Cross's reinterpretation is able to analysis of structures 

with transverse displacement more easily than the classical method. 
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1  Introduction 

Cross method was presented by Professor Hardy Cross in 1930 in the article “Analysis of Continuous Frames 

by Distribution Fixed-End Moments”, published in the American Society of Civil Engineers Transactions, to 

analyze hyperstatic structures with inextensible bars and without transverse displacements. your advantage is it 

doesn't need a directly solve a system of equations and find the bending moment diagram of the structure. 
(SORIANO [1]) 

But the Cross Method lose ground with the evolution and popularization of structural analysis software, its 

use is reserved only for undergraduate students, because of its historical retrospective and aid in understanding 

structural analysis (SOUZA [2]). 

2  Cross Method 

The original Cross Method, referred to in this work as the Classic Cross Method, determines the bending 

moment diagram and the support reactions of hyperstatic structures through the distribution of bending moments 

at the nodes, according to the stiffness of each bar. All of this is done using two tables. Stiffness Coefficient Table 
and Perfect Embedment Table (SORIANO [1]). 

However, it has limitations, “the direct application of the method is restricted to cases in which the joints do 

not move during the moment distribution process.But the method can be applied indirectly in cases where joints 

are displaced during moment distribution” (CROSS [3]). 

A matrix approach is presented by Moureira [4] with the aim of automating the iterative process of the 

classical method. All processes are automated through matrix operations, using the Distribution and Transmission 

Operator to perform the functions of the Distribution and Transmission Coefficients. For more details, see 

Moureira [4]. 

From a numerical point of view, the Cross Method is an iterative solution process for the equilibrium equation 

systems of the Displacement Method, according to White, Gergely, and Sexsmith [5]. This occurs regardless of 
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the approach used (Classical, Gauss-Seidel, or Matrix). 

3  Objectives 

Propose a general method that includes the classical method as a particular case and without transverse 

displacements limitations. 

4  Methodology 

Use the Displacement Method in conjunction with the Gauss-Seidel approximation and physically interpret 

the iterative process. 

5  The Cross Method by Gauss-Seidel 

The method begins with the assembly of the equilibrium equation system of the displacement method. The 

state E0 is created, where all displacements of the structure are restrained, and the support reactions at each node 

are calculated using the Fixed-End Moments Table. In E0, states are created by applying a unit prescribed 
displacement at a support. The reactions caused by this displacement are found in the Stiffness Coefficients Table. 

Using the superposition of effects, the equilibrium equations and the stiffness matrix are assembled, including 

all axial, transverse, and rotational displacements. The equilibrium equation is compactly expressed as: 

 𝐾. 𝑑 = 𝐸0 (1) 

With: 

𝐾 = Stiffness Matrix 

𝑑  = Displacement Vector 

𝐸0 = Force Vector in state E0 
This system can be solved either directly or indirectly. In this work, the indirect approach of the Gauss-Seidel 

approximation will be used. The equation can be solved directly by inserting the nodal forces into the equilibrium 

equations, or indirectly by adding the reactions from state E0 to the nodal forces, with no significant difference 

between the methods. 

5.1 Gauss-Seidel Method 

Gauss-Seidel is a systematic approximation method. Given a generic system: 

 [𝐴]. [𝑋] = [𝐵] (2) 

If the diagonal elements of matrix [𝐴] are non-zero, it is possible to isolate 𝑥𝑖 in row “i”, for example 𝑥1 in 

equation (2): 

 
𝑥1 =

𝑏1 − 𝑎12. 𝑥2 − 𝑎13. 𝑥3 −⋯𝑎1𝑛. 𝑥𝑛
𝑎11

 
(3) 

The iterative process begins by choosing an initial approximation for the vector [𝑋]. A simple case is to 

assume [𝑋] = [0].The initial approximation is substituted into equation (3) to find a new value for 𝑥1, which will 

be used in the approximation of 𝑥2. The process continues using the values of 𝑥i to calculate the approximation of 

𝑥i+1. After the first iteration, the process is repeated until the approximation converges to values sufficiently close 

to the exact solution. Assuming iteration 1, [𝑋] = [0], the i-th first variable is being calculated. 

 

𝑥𝑖+1 =

𝑏𝑖+1 − 𝑎𝑖+1,1. 𝑥1…−𝑎𝑖+1,𝑖 . 𝑥𝑖−𝑎𝑖+1,𝑖+2. 0⏟
𝑥𝑖+2

…− 𝑎𝑖+1,𝑛. 0⏟
𝑥𝑛

𝑎𝑖+1,𝑖+1
 

(4) 

5.2 Application of Gauss-Seidel in equilibrium equations 

The Cross Method by Gauss-Seidel aims to find a solution to the equilibrium equations using a Gauss-Seidel 
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approximation. The condition for applying Gauss-Seidel is naturally met by the Stiffness Matrix. The iterative 

process of equation (1) begins by assuming the initial approximation [𝑑] = [0], calculating 𝑑1 according to 

equation (5): 

 
𝑑1 =

𝐸01 − 𝑘12 . 𝑑2 − 𝑘13 . 𝑑3 −⋯𝑘1𝑛 . 𝑑𝑛

𝑘11
 

(5) 

With [𝑑] = [0]. 

 
𝑑1 =

𝐸01
𝑘11

 
(6) 

Using [𝑑] = [0] corresponds to restraining all displacements, while equation (5) is equivalent to releasing 

displacement 1, allowing its movement due to the loads of E0. The remaining nodes are kept restrained, similar to 

the Classical Cross Method, but transverse displacements can also be released. 

At this stage, a modification is made to the Gauss-Seidel iterative process by adding the Residual matrix, 

equation (7): 

 
𝑅𝑒𝑠1.𝑖𝑡1 = 𝐾. [

𝑑21𝑖𝑡1
⋮
0
] + 𝐸0 

(7) 

This matrix stores the support reactions in the displacements. The first term represents the effect of the new 

value of 𝑑1 on the remaining displacements, similar to the moment transmitted in the Cross Method. The second 

term is the existing support reaction in state E0, analogous to the sum of moments acting on each node in the 

Classical Cross Method. 

The iteration continues from this stage, using the Residual to find new values of [𝑑]. Since the effect of 𝑑1 is 

already included in the Residual, it should not be directly accounted for in the approximation of other 

displacements. Thus, 𝑑1  =  0 in the vector [𝑑], meaning displacement 1 is restrained again to release another 

displacement, similar to the classical method. This simplifies the calculations for other approximations, as there 

will be only one module, equation (8): 

 
𝑑2.𝑖𝑡1 = −

𝑅𝑒𝑠1.𝑖𝑡12,1
𝐾2,2

 
(8) 

Using the Residual in equation (8) will find only successive increments for[𝑑], instead of calculating the total 

value of the current approximation. It is necessary to sum all iterations at the end of the process, just like in the 

Cross Method. The process continues for other displacements until the iteration is complete: 

 

𝑅𝑒𝑠2.𝑖𝑡1 = 𝐾. [

0
𝑑2.𝑖𝑡1
⋮
0

] + 𝑅𝑒𝑠1.𝑖𝑡1 

(9) 

From this stage, the residual from the previous approximation is used instead of E0. This is done to account 

for the effects of all increments calculated so far. A new iteration is performed until the increments of [𝑑] are 

sufficiently close to zero. 

6  Example 

The beam in Figure 1, whose bars have an elasticity modulus E = 210 GPa, a width of 0.20m, and a height 

of 0.80m, was analyzed using the Cross Method by Gauss-Seidel. 

 

Figure 1. Example beam. 
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6.1 The Cross Method by Gauss-Seidel 

The method starts with state E0 from Figure 1. From there, a state is created for each displaceability, and the 

equilibrium equations, equation (1), and the stiffness matrix are assembled using the Stiffness Coefficients Table 

𝐸0 +𝐾. 𝑑 = 0
                      
→       𝑑 = −𝐾−1. 𝐸0 

The stiffness matrix, K. 

𝐾 =

[
 
 
 
 
 𝑘11 + 𝑘12 + 𝑘2𝑡

𝑘12
2

𝑘13 𝑘14

𝑘12
2

𝑘22 + 𝑘23 + 𝑘2𝑡 𝑘32 𝑘14 + 𝑘42

𝑘31 𝑘23 𝑘33 + 𝑘3𝑡 𝑘34
𝑘41 𝑘41 + 𝑘42 𝑘43 𝑘33 + 𝑘44 + 𝑘4𝑡]

 
 
 
 
 

 

Stiffness coefficients, 𝑘𝑖𝑗: 

𝑘13 = 𝑘23 = 𝑘31 = 𝑘32 =
6. 𝐸. 𝐼

𝐿2
2 , 𝑘33 =

12. 𝐸. 𝐼

𝐿3
2 , 

𝑘14 = 𝑘41 =
−6. 𝐸. 𝐼

𝐿2
2 , 𝑘34 = 𝑘43 =

−12. 𝐸. 𝐼

𝐿3
2 , 𝑘44 = 𝑘42 =

3. 𝐸. 𝐼

𝐿2
3  

Stiffness coefficients of transverse and rotational springs: 

𝑘1t = 𝑘2𝑡 = 5 . 10
5  𝑘𝑁.𝑚 𝑟𝑎𝑑⁄ , 𝑘3𝑡 = 𝑘4𝑡 = 5 . 10

5  𝑘𝑁 𝑚⁄  

State E0: 

𝐸0 =

[
 
 
 
 
 
 
 𝜃. (

−𝐸. 𝐼

𝐿1
) − 40

−𝛿. (
3. 𝐸. 𝐼

𝐿3
2 )

0

100 − 𝛿. (
3. 𝐸. 𝐼

𝐿3
2 )

]
 
 
 
 
 
 
 

= [

−3,588 . 104 𝑘𝑁.𝑚

−3,36 . 104 𝑘𝑁.𝑚
0 𝑘𝑁

−8,3 . 103 𝑘𝑁.𝑚

] 

Displacements, with the initial approximation 𝑑 = [0] 

𝑑 = [

𝑑1
𝑑2
𝑑3
𝑑4

] = [

0
0
0
0

] 

di = displacement in position “i” 

1° Displacement: 

𝑅𝑒𝑠1.𝑖𝑡1 = 𝐾.

[
 
 
 
 
𝐸01,1
𝐾1,1
0
0 𝑚
0 𝑚 ]

 
 
 
 

+ 𝐸0 = 𝐾. [

0.011 𝑟𝑎𝑑
0 𝑟𝑎𝑑
0 𝑚
0 𝑚

] + [

−3,588 . 104 𝑘𝑁.𝑚

−3,36 . 104 𝑘𝑁.𝑚
0 𝑘𝑁

−8,3 . 103 𝑘𝑁.𝑚

] = [

0 𝑘𝑁. 𝑚
−2,04 . 104 𝑘𝑁.𝑚

1,32 . 104 𝑘𝑁

−2,15 . 104 𝑘𝑁

] 

2° Displacement: 

𝑅𝑒𝑠2.𝑖𝑡1 = 𝐾.

[
 
 
 
 
0 𝑟𝑎𝑑
𝑅𝑒𝑠1.𝑖𝑡1
𝐾2,2
0 𝑚
0 𝑚 ]

 
 
 
 

+ 𝑅𝑒𝑠1.𝑖𝑡1 = 𝐾. [

0 𝑟𝑎𝑑
0.005 𝑟𝑎𝑑
0 𝑚
0 𝑚

] + [

0 𝑘𝑁. 𝑚
−2,04 . 104 𝑘𝑁.𝑚

1,32 . 104 𝑘𝑁

−2,15 . 104 𝑘𝑁

] = [

5,76 . 103 𝑘𝑁. 𝑚
0 𝑘𝑁.𝑚

1,90 . 104 𝑘𝑁

−2,56 . 104 𝑘𝑁

] 

The continuous residue process for displaceabilities 𝑑3 and 𝑑4, completing the 1st iteration, required 5 

iterations to find the approximate solution, as shown in Table 1 
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Table 1. Example results of Gauss Seidel approximation. 

Iteration 
Displacement 

d1 (10-2rad) d2 (10-2rad) d3 (cm) d4 (cm) 

1 1.1 5.00E-01 -1.5 1.01E-01 

2 7.33E-01 4.11E-01 -4.32E-01 6.41E-01 

3 2.44E-01 1.83E-01 5.93E-04 3.25E-01 

4 5.20E-02 5.11E-02 1.05E-01 1.40E-01 

5 6.87E-03 2.05E-04 9.04E-02 4.64E-02 

Total 2.1359 1.1453 -1.7360 1.2534 

In Table 1, it is possible to observe that many iterations were necessary. But, the Gauss-Seidel approximation 

didn’t require matrix inversion. To solve this example with Classic Cross method, would need to be used in three 

states to find the support reactions and solve a system of equations, which would be more laborious as the number 

of transverse displaceabilities increases. 

7  Conclusion 

Considering the information presented, concluded the Cross Method had great importance after his 

publication. But lost, the reasons are limitations with transversal displacements, although you can use indirect 

solutions, but the advantages of the method are lost. The suggested solution was the Cross Method by Gauss-

Seidel, which uses a Gauss-Seidel approximation to find the solution to the equilibrium equations. 
With example, it was observed that the Gauss-Seidel approximation was able to solve structures with 

transverse displaceabilities, without increasing the number of iterations and using simple calculations. And 

stablishing the Classical Cross Method as a particular case of the Cross Method by Gauss-Seidel, through their 

physical interpretations. 
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