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Abstract. In Structural Engineering, it is paramount to find robust solutions that ensure structural safety without 

sacrificing cost-effectiveness. To achieve this goal, one strategy involves considering the uncertainties inherent in 

projects, taking into account the variability of design parameters, rather than relying solely on characteristic values 

provided by semi-probabilistic approaches. This probabilistic paradigm allows for estimating the probability of 

failure of structural elements and systems, providing robustness to design, contributing to decision-making 

process, and reducing risks associated with both overly conservative and expensive projects, and economical yet 

unsafe projects. This study aims to implement the coupling between mechanical and reliability models to analyze 

the structural behavior of plates in linear regime. Mechanical models based on the Boundary Element Method 

(BEM) and reliability models based on Monte Carlo Simulation (MCS) are developed and validated, by using 

Python language. The random variables considered may include mechanical parameters such as elastic modulus 

and Poisson's ratio, dimensions of structural elements, as well as applied loads. The objective is to evaluate the 

probability of occurrence of usual limit states in structural analysis, such as the violation of allowable displacement 

and stress values. 
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1  Introduction 

Numerical simulations of engineering problems are widely employed in the analysis and design of structures, 

driven by continuous advances in hardware and software technology, enabling increasingly sophisticated 

simulations. Among the main methods to numerically represent physical problems are the Finite Element Method 

(FEM), the Finite Difference Method (FDM), and the Boundary Element Method (BEM), the latter emerging as a 

more recent approach. According to Ubessi [1], the characteristics that make BEM attractive for application in 

engineering problems stem from its mathematical foundation: the integral equations that result in the method are 

boundary-based, reducing one dimension in the discretization of the problem, and its mixed character, which 

considers both displacements and tractions on the boundary in its formulation. 

Regarding the evaluation of structural safety, reliability-based modeling stands out. It considers the 

uncertainties inherent to the design variables and investigates their influence on the structural response, allowing 

to estimate the probability of occurrence of a specified failure mode. This paper addresses the probabilistic 

response of elastostatics problem by combining the well-known Monte Carlo Simulation (MCS) with mechanical 

modeling based on BEM. 
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2  Boundary Element Method applied to elastostatics 

The general equilibrium equation of linear elastic problem, evaluated at a point 𝑞, is given in terms of the 

stress tensor 𝜎𝑘𝑗 and the body forces vector 𝑏𝑘, as follows: 

𝜎𝑘𝑗,𝑗 + 𝑏𝑘  = 0, in 𝛺. (1) 

The strain state (𝜀𝑘𝑗) of this material point can be related to the displacement field as stated in eq. (2): 

𝜀𝑘𝑗(𝑞)  =
1

2
[𝑢𝑘,𝑗(𝑞) + 𝑢,𝑗,𝑘(𝑞)]. (2) 

2.1 Boundary Integral Formulation 

Rizzo [2] presented the formulation of the direct BEM for elasticity. Brebbia [3] illustrated the procedure for 

obtaining this formulation through the application of the weighted residual method. The integration of the product 

between eq. (1) and weight functions of the type 𝑢𝑘
∗  leads to eq. (3), as follows: 

∫ (𝜎𝑘𝑗,𝑗 + 𝑏𝑘)𝑢𝑘
∗ 𝑑𝛺.

⬚

𝛺

 (3) 

By integrating by parts the first term and grouping the boundary integrals on the right-hand side of the 

equation: 

− ∫ 𝜎𝑘𝑗𝑢𝑘,𝑗
∗ 𝑑𝛺

⬚

𝛺

 + ∫ 𝑏𝑘𝑢𝑘
∗ 𝑑𝛺

⬚

𝛺

  = − ∫ 𝑝𝑘𝑢𝑘
∗ 𝑑𝛤,

⬚

𝛤

  (4) 

where the first term can be integrated by parts again, giving rise to eq. (5): 

∫ 𝑢𝑘𝜎𝑘𝑗,𝑗
∗ 𝑑𝛺 

⬚

𝛺

+ ∫ 𝑏𝑘𝑢𝑘
∗ 𝑑𝛺

⬚

𝛺

= − ∫ 𝑝𝑘𝑢𝑘
∗ 𝑑𝛤

⬚

𝛤

+ ∫ 𝑢𝑘𝑝𝑘
∗ 𝑑𝛤,

⬚

𝛤

  (5) 

which corresponds to Betti's reciprocity theorem. Equation (5) must satisfy the following boundary conditions 

𝑢𝑘 =  𝑢𝑘 in 𝛤1,  𝑝𝑘 =  𝑝𝑘  in 𝛤2. (6) 

Dividing the boundary 𝛤 into 𝛤1 and 𝛤2 to apply the respective boundary conditions, we obtain eq. (7): 

∫ 𝑢𝑘𝜎𝑘𝑗,𝑗
∗ 𝑑𝛺 

⬚

𝛺
+ ∫ 𝑏𝑘𝑢𝑘

∗ 𝑑𝛺
⬚

𝛺
= − ∫ 𝑝𝑘𝑢𝑘

∗ 𝑑𝛤
⬚

 𝛤1
− ∫ 𝑝𝑘𝑢𝑘

∗ 𝑑𝛤 
⬚

𝛤2
 + ∫ 𝑢𝑘𝑝𝑘

∗ 𝑑𝛤
⬚

 𝛤1
+ ∫ 𝑢𝑘 𝑝𝑘

∗ 𝑑𝛤
⬚

𝛤2
. (7) 

Applying weight functions from fundamental solutions [ ]∗, the domain integral simplifies to: 

∫ 𝑢𝑘𝜎𝑘𝑗,𝑗
∗ 𝑑𝛺  

⬚

𝛺

= ∫ 𝑢𝑙𝜎𝑙𝑗,𝑗
∗ 𝑑𝛺

⬚

𝛺

= − ∫ 𝛥𝑖𝑢𝑙𝑒𝑙𝑑𝛺
⬚

𝛺

= −𝑢𝑙
𝑖𝑒𝑙 , (8) 

which can be written more concisely without separating the unknowns and boundary conditions in eq. (9): 

𝑢𝑙
𝑖  + ∫ 𝑢𝑘𝑝𝑙𝑘

∗ 𝑑𝛤 
⬚

𝛤

= ∫ 𝑝𝑘𝑢𝑙𝑘
∗ 𝑑𝛤

⬚

 𝛤

+ ∫ 𝑏𝑘𝑢𝑙𝑘
∗ 𝑑𝛺

⬚

𝛺

. (9) 

Known as Somigliana's identity, this equation allows for calculation of displacements based on boundary 

values, domain forces, and fundamental solutions. Singularities in boundary must be isolated, leading to: 

∫ 𝑝𝑙𝑘
∗ 𝑢𝑘𝑑𝛤

⬚

𝛤
= 𝑙𝑖𝑚

𝑒→0
{∫ 𝑝𝑙𝑘

∗ 𝑢𝑘𝑑𝛤
⬚

𝛤−𝛤𝑒
} + 𝑙𝑖𝑚

𝑒→0
{∫ 𝑝𝑙𝑘

∗ 𝑢𝑘𝑑𝛤
⬚

𝛤𝑒
}. (10) 

It can be proven that, at points where the boundary is smooth, eq. (10) simplifies to eq. (11): 

𝑙𝑖𝑚
𝑒→0

{∫ 𝑝𝑙𝑘
∗ 𝑢𝑘𝑑𝛤

⬚

𝛤𝑒

} =
1

2
𝛿𝑙𝑘 , (11) 

and all other integrals tend to zero. Thus, the left side of eq. (11) results in eq. (12), as follows: 

∫ 𝑝𝑙𝑘
∗ 𝑢𝑘𝑑𝛤

⬚

𝛤
−

1

2
𝛿𝑙𝑘𝑢𝑘

𝑖 = ∫ 𝑝𝑙𝑘
∗ 𝑢𝑘𝑑𝛤

⬚

𝛤
−

1

2
𝑢𝑙

𝑖 . (12) 
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 Denoting the free term as 𝑐𝑙𝑘
⬚, eq. (9) can be written as eq. (13): 

𝑐𝑙𝑘
𝑖 𝑢𝑘

𝑖 + ∫ 𝑝𝑙𝑘
∗ 𝑢𝑘𝑑𝛤

⬚

𝛤
= ∫ 𝑢𝑙𝑘

∗ 𝑝𝑘𝑑𝛤
⬚

𝛤
+ ∫ 𝑏𝑘𝑢𝑙𝑘

∗ 𝑑𝛺
⬚

𝛺
.    (13) 

At points where the boundary is not smooth (edges and vertices), the free term 𝑐𝑙𝑘
⬚ becomes dependent on 

formulations. 

2.2 Numerical Implementation 

Efficient implementation of BEM involves appropriate boundary discretization, suitable interpolation 

functions, and precise resolution of singular integrals. To calculate displacements and surface forces in two 

directions, global matrices G and H are formed, containing components of integrals associated with forces and 

displacements. These matrices form a system of linear equations that, when solved, provides unknown values at 

the boundaries and allows the determination of displacements and stresses at internal points, as described in 

equations (14) and (15): 

[𝐻]{𝑢} = [𝐺]{𝑝}, (14) 

[𝐴]{𝑋} = {𝐵}. (15) 

According to Vieira et al. [4], in the Boundary Element Method, displacements and stresses at internal points 

are obtained from boundary information, in terms of displacements and tractions. Equations (16) and (17) are used 

to calculate, respectively, the displacements and internal stresses: 

𝑢𝑖(𝑠) =  − ∫ 𝑝𝑖𝑗
∗ (s, Q)𝑢𝑗(𝑄)𝑑𝛤(𝑄)

⬚

𝛤

+ ∫ 𝑢𝑖𝑗
∗ (s, Q)𝑝𝑗(𝑄)𝑑𝛤(𝑄) + ∫ 𝑢𝑖𝑗

∗ (𝑠, 𝑞)𝑏𝑗(𝑞)𝑑𝛺(𝑞),
⬚

𝛺

⬚

𝛤

 (16) 

𝜎𝑖𝑗(𝑠) =  − ∫ 𝑆𝑖𝑗
∗ (s, Q)𝑢𝑘(𝑄)𝑑𝛤(𝑄)

⬚

𝛤

+ ∫ 𝐷𝑖𝑗
∗ (s, Q)𝑝𝑘(𝑄)𝑑𝛤(𝑄) + ∫ 𝐷𝑖𝑗

∗ (𝑠, 𝑞)𝑏𝑘(𝑞)𝑑𝛺(𝑞).
⬚

𝛺

⬚

𝛤

 (17) 

These integrals give rise to the so-called BEM influence matrices, which are arranged in an algebraic system, 

that can be solved to obtain the outcomes of the method. 

 

3  Structural Reliability Concepts 

The failure mode to be investigated is represented by a limit state function 𝐺(𝑿), in which vector 𝑿 contains 

𝑛 random variables (r.v) under consideration. This function determines regions whether a structure is safe or 

unsafe, this latter indicated by 𝐺(𝑿) ≤ 0. The probability of a point belonging to failure region can be calculated 

by the 𝑛-dimensional integral of the joint probability density function of r.v. over this domain: 

𝑃𝑓 = ∫ 𝑓𝑿(𝒙) 𝑑𝒙
⬚

𝐺(𝑿)≤0

      (18) 

The evaluation of eq. (18) can become complex, considering the nature of the kernel 𝑓𝑋(𝑥), especially in 

problems with a large number of r.v. Thus, different reliability methods are proposed in the literature, as is the 

case of MCS. According to Melchers and Beck [5], the method exhaustively simulates 𝑁 random events to estimate 

𝑃𝑓, by generating random numbers to represent the distribution of variables and evaluating them in the limit state 

equation. Failure probability is estimated by the relation between failure events and the total number of events: 

𝑃𝑓 =
𝑁𝑓

𝑁
.          (19) 

The estimate of 𝑃𝑓 via MCS is roughly random itself, depending on the sampling size of the r.v. Aiming to 

obtain uniform results across different runs requires estimating a minimum number of scenarios, taking into 

account the characteristic 𝑃𝑓
′ of the problem and the desired value for its coefficient of variation 𝛿 – usually taken 

as 5% – as follows: 

𝑁𝑚𝑖𝑛 =
1

𝛿2

1−𝑃𝑓
′

𝑃𝑓
′ .          (20) 
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4  Numerical Application 

A benchmark example is addressed in this section, aiming to validate and apply MCS-BEM strategy proposed 

herein. Consider a 20 m side square plate with a 1 m central hole under tension (Fig. 1), in plane stress condition. 

It is applied an uniform tensile stress of 133 MPa. The material presents elastic modulus 𝐸=200×109 Pa and 

Poisson’s ratio 𝑣 = 0.33. The example was analyzed in the BEM Python-based routine developed. In order to 

conduct a convergence study, the response in terms of vertical stress 𝜎22 at radius 𝑟 is compared to the analytical 

solution (Kapturczak and Zieniuk [6]), given by eq. (21): 

 

𝜎22 =  
𝑝

2
(2 +

𝑅2

𝑟2
+ 3

𝑅4

𝑟4
).            (21) 

in which 𝑅 stands for the hole radius and 𝑝 refers to the stress applied to. The point with coordinates (1.1,0) is 

taken as reference for the validation. Going precisely to the analytical value, 𝜎22 is 365,016,424.3 Pa at this point. 

 

 
Figure 1. Square plate with circular hole under tension 

From an initial mesh containing 8 boundary nodes, this discretization is enhanced to 94 nodes. Figure 2 

illustrates that as discretization increases, the relative error to the analytical result decreases. It can be observed 

error values ranging from 1.27% up to 0.21%, this latter related to the finest 94-node mesh, which provide vertical 

stress of 365,016,403.2 Pa. 

 

 
Figure 2. Error vs. Number of Nodes 

 

By adopting a 32-node discretization, this problem is analyzed in the light of reliability analysis. In Table 1, 

it can be seen the statistical parameters adopted for the r.v. considered, the material yield limit and applied stress 
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(Hamilton [7]). The r.v. dispersion is described in terms of their coefficient of variation (COV), which relates the 

standard deviation to the mean value. 

Table 1. Statistical description of the r.v. considered 

Random Variable Mean COV Distribution 

𝑓𝑦 (MPa) 450 0.063 LogNormal 

p (MPa) 133 0.05 Normal 

The failure mode verified is related to the onset of the material yielding, as stated in the limit state function: 

𝐺(𝑓𝑦 , 𝑝) = 𝑓𝑦 − √𝜎1
2 + 𝜎2

2 − 2𝜎1𝜎2 
           (22) 

in which the second term on the right-hand side refers to the von Mises equivalent stress at the reference point, 

defined in terms of the principal stresses 𝜎1 and 𝜎2, which are outcomes of the BEM routine each of the thousands 

of times it is called. Subsequently, the r.v. associated to 𝑝 is then considered. 

Carrying out the Monte Carlo analysis, by generating 49,600 scenarios, a failure probability of 8.2 x 10-3 is 

estimated at a coefficient of variation of less than 5%, according to eq. (20). 

5  Conclusions 

Given the above, it can be concluded that the BEM implementation meets the proposed objective, as it 

presents the results of plate analysis, including displacements and stresses. Additionally, regarding the probabilistic 

analysis of the problem, it is possible to affirm that the mechanical-reliability coupling, by using MCS-BEM 

strategy, performed successfully. It must be noted the high computational cost associated, due to exhaustive calling 

to the numerical model. 

Regarding reliability-based approaches, it stands out that there is no consensus on the admissible 𝑃𝑓 values, 

lying in a case-driven analysis depending on the observed failure mode – whether it is an ultimate or serviceability 

limit state – and the risk tolerance defined by the analyst. 

Future research can include the use of more sophisticated reliability methods, such as the First Order 

Reliability Method (FORM), besides the consideration of different failure modes. 
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