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Abstract. In the various branches of engineering, dynamic analysis of structures is always a relevant topic and 

the training of future professionals and researchers in this area is always important. Nowadays, with the 

evolution of materials and topological dispositions, structural elements and structures are becoming lighter and 

slender, increasing the amplitude of movements in such a way that nonlinear geometric analysis is necessary. 

Regarding actuated structures or origami mechanisms, there is a natural mobility between planes defined by the 

relative rotation in the creases that makes it possible to create foldable devices of great interest such as the 

production of retractable roofs, retractable antennas, wheels for light vehicles, biomechanical devices, among 

others. This study introduces the presence of actuators in spatial structures by directly controlling the initial 

length of truss elements (actuation). At the same time, to define origami or “flat” 3D structures, it is necessary to 

introduce the strain energy associated with the folds at the junction between flat panels (creases). To introduce 

this energy, vectors orthogonal to the adjacent origamic planes are defined and springs are introduced to oppose 

the change in the angle between the planes. Illustrative examples and discussions of future improvements are 

presented. 
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1  Introduction 

Considering the relevance of dynamic structural analysis and its increasing evolution and improvement, the 

elaboration of numerical and computational models that beholds nonlinear behavior is very necessary. In this 

sense, the mechanisms of origamic structures, that have a natural mobility between planes defined by the rotation 

in their creases, allow the creation of foldable devices that have been attractive to aeronautical, mechanical and 

civil engineering researchers (Sorguç et al. [1], Felton et al. [2] and Nishyiama et al. [3]).  

This study presents the development of a finite element computational code capable of modeling 3D truss 

structures, actuated truss mechanisms and origami structures using some basic concepts such as: objective strain 

measurements, strain energy, energy conjugate, conservative external loads, the principle of stationary 

mechanical energy, iterative solution and time integration (Bonnet and Wood [4], Newmark [5] and Coda and 

Paccola [6]).  

The Finite Element Method (FEM) that uses position as parameters is chosen for the work’s development; 

see, for instance, Greco et al. [7] and Coda et al. [8].  

Specifically in this study, the origami elements are inspired in the Japanese technique of folding with 

creation of valleys and crests in a tridimensional mobility of paper. With that in mind, the literature references 

several origami patterns such as the “waterbomb” element, that has been used due to its “developable” 

characteristic that allows it to create many foldable structures and to adapt itself to revolution surfaces (Fonseca 

[9]). One of the notable uses of this pattern is the space exploration area (Dorn et al. [10] and Lee and Pelegrino 
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[11]). To sum up, the developed code was validated by structures with simple mechanisms and its possibilities 

explored in a waterbomb origami cell. 

2  Finite Element Method for trusses dynamics and actuated structures 

The Finite Element Method strategy of this work is called positional and is based on Greco et al. [7] and 

Coda [12]. Thus, from the principle of stationary mechanical energy one achieves the motion equation expressed 

as: 

 𝛿𝛱 = 𝛿𝑃 + 𝛿𝐾 + 𝛿𝑈 = 0.  (1) 

where P is the work potential of external loads, K is the kinetic energy of the concentrated masses (truss 

elements), and U is the strain energy stored by all elements. From the positional approach one replaces each 

portion of eq. (1) by equivalent forces following direction (𝛼) and belonging to nodes (𝛽); (𝑌𝛼
𝛽

): 

 −(𝐹𝛼
𝛽)

𝑒𝑥𝑡
+ 𝛭(𝛽)𝑌𝛼

𝛽̈
+ (𝐹𝑖𝑛𝑡(𝑌𝑘

𝛾))
𝛼

𝛽

= 0𝛼
𝛽 . (2) 

wherein (𝐹𝛼
𝛽

)
𝑒𝑥𝑡

are the external loads applied at the nodes (𝛽), 𝛭(𝛽)is the concentrated mass of each node and 𝑌𝛼
𝛽̈

 is 

the acceleration in each direction (𝛼) of nodes (𝛽). 

It is evident that the values of the last two portions in eq. (2) are dictated by a change in the configuration 

of the truss element that can be represented in a general sense by Fig 1. 

 

Figure 1. Change of configuration of a truss element. 

2.1 Actuator Element 

The actuator element used in this work was presented in Coda et al. [8] and is achieved by changing the 

Green-Lagrange strain expression used in the truss elements to the equation below: 

 𝔼 =
1

2
[

𝑙2−(𝑙0+𝛥𝑙0)2

𝑙0
2 ] (3) 

wherein 𝑙 is the current length of the analyzed element, (𝑙0) is its initial length and Δ𝑙0 is the actuated length 

change. 

3  Origami Element 

As mentioned in the introduction, the origami element consists of the union between two rigid planes 

constituted by truss elements and was presented in Liu and Paulino [13]. In this study, a formulation inspired by 

that work, is developed in the positional finite elements’ version. As shown in Fig 2., the element has 4 nodes 

and 5 truss elements, defined here as vectors 𝑣⃗𝑖0 in the initial configuration and 𝑣⃗𝑖 in the current one; the change 

of configuration is also presented in Fig 2.  

To incorporate this element into the equations of motion shown in Section 2, it is considered that the strain 

energy stored in the origami is defined by the difference in the angles formed by the two panels in its current (𝜃) 

and (𝜃0) configurations. In this work, the following strain energy expression is considered: 
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 𝑈𝑒 =
𝐾

2
(𝜃 − 𝜃0)2 (4) 

 

Figure 2. Change of configuration of a origami element. 

With the strain energy expression defined, the conjugate internal forces are obtained as: 

 𝐹𝛼
𝛽𝑖𝑛𝑡

=
𝜕𝑈𝑒

𝜕𝑌𝛼
𝛽 =

𝑑𝑈𝑒

𝑑𝜃

𝜕(𝜃)

𝜕𝑌𝛼
𝛽 = 𝐾(𝜃 − 𝜃0)

𝜕𝜃

𝜕𝑌𝛼
𝛽 (5) 

considering that each vector of the origami is the difference of the nodes positions, and that 𝑤⃗⃗⃗1 = 𝑣⃗1^𝑣⃗2 and 

that 𝑤⃗⃗⃗2 = 𝑣⃗4^𝑣⃗3, the angles 𝜃 can be calculated as follows: 

 𝜃 = 𝑎𝑡𝑎𝑛 [
(𝑤⃗⃗⃗1^𝑤⃗⃗⃗2)∙𝑣⃗⃗5

(𝑤⃗⃗⃗1∙𝑤⃗⃗⃗2)√𝑣⃗⃗5∙𝑣⃗⃗5
] (5) 

in the first step of the code, the angle obtained through the equation above is stored as 𝜃0, to be used in all the 

subsequent steps. In addition, one uses the chain rule on eq. (5) to calculate ∂θ/ ∂Yα
β
 and obtains the internal 

forces. Similarly, one calculates 𝜕2θ/(∂Yγ
η

∂Yα
β) and obtains the origami part of the Hessian matrix as: 

 𝐻𝛼𝛾
𝛽𝜂

=
𝜕2𝑈𝑒

𝜕𝑌𝛾
𝜂

𝜕𝑌𝛼
𝛽 =

𝜕𝐹𝛼
𝛽𝑖𝑛𝑡

𝜕𝑌𝛾
𝜂 = 𝐾

𝜕𝜃

𝜕𝑌𝛾
𝜂

𝜕𝜃

𝜕𝑌𝛼
𝛽 + 𝐾(𝜃 − 𝜃0)

𝜕2𝜃

𝜕𝑌𝛾
𝜂

𝜕𝑌𝛼
𝛽 (6) 

during the study of examples with origami cells, it was noted that the crease’s stiffness is always close to 

instability and the choice of the Hessian matrix can affect the solution paths. In this case, it is chosen to keep 

only the spring material contribution to the Hessian matrix (first part of eq. (6)). 

4  Example 1: 8 creased Waterbomb cell 

In this example, the Waterbomb cell will be explored, specifically in how its dimensions vary with the 

application of forces. Fig. 3a represents a vertical view of the cell and shows the dimensions (𝐿 and 𝑊) that will 

change along the analysis, whereas the dimension 𝑅 = √𝐿0
2 + 𝑊0

2 is constant. Fig. 3b shows a side view of the 

deformed cell and where the height 𝐻 is defined. The input data are: 𝐿0 = 𝑊0 = 1𝑚; for the trusses’ bars: 𝐸 =

3𝑀𝑃𝑎 , 𝐴 = 10−2𝑚2 and 𝜌 = 70𝑘𝑔/𝑠2 and for the hinges: 𝐾 = 1𝑁. 𝑚. Points A, B, C and D are constrained in 

the vertical direction, point E is constrained in direction 𝑥1, point F in the direction 𝑥2 and finally the central 

point in the directions 𝑥1 and 𝑥2. 

 
 

Figure 3. Geometry of the Waterbomb cell.  
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(a) Vertical view (b) Lateral View 
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In the static analysis, a vertical force is applied in the central point of 130𝑁 along with negative vertical 

forces of 32.5𝑁 in points E, F and their symmetrical partners. These loads are divided in 650 equally spaced 

steps. Figure 4 shows the general geometrical behavior of the cell in function of the central applied load. 

 
Figure 4. Configurations of the static origami analysis. 

The static analysis is also graphically shown in Fig. 5a with the central vertical displacement. Through the 

analysis the theoretical prediction of the planar Poisson’s ratio (Fonseca [9]) was exactly reproduced with the 

value -1 constant. Fig. 5b shows the dynamic behavior of the central point considering a linear applied load until 

time 65s with the final value being 130𝑁, after that the force is kept constant. The damping considered was 𝐶 =

0.1𝑠−1𝑀 and the adopted time step was Δ𝑡 = 0.1𝑠. 

 

Figure 5. Vertical displacement of the central point. 

5  Example 2: Foldable structure  

The foldable structure and its discretization are depicted in Fig. 6a. It is constituted of 49 truss elements 

(including actuators) with same properties of the previous example and origami elements with transverse 

junctions with K = 3.32Nm. We adopted K = 1000Nm for diagonal origami elements. Nodes 1 and 10 are 

restricted for all translations, nodes 2, 4, 6, 8 11, 13, 15 and 17 are free to move and have an initial vertical 

different from 0 (1mm), while other nodes are restricted in vertical direction. Actuation is imposed by a total 

contraction of 7.2m spread in actuators of 2m (connecting nodes 1,3 etc) divided in 1800 steps, i.e., a 
30.5 10x m− = −  for each actuator for each step. In Fig. 6b one can see the folded structure. 

 

Figure 6. Initial and final positions of a foldable structure 
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(a) Static responce (b) Dynamic response 
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(a) Discretization (b) Folded structure 
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As one can see in this example, the use of origami, truss and actuators elements makes possible to simulate 

3D foldable structures with a very good response, as the considerable total contraction exemplifies. 

6  Conclusions 

In this work, a successful formulation for origami and actuated structures was implemented and, even with 

simple examples, it is shown the great potential of this approach, specifically in the packaging of foldable 

structures and the analysis of transient nonlinear dynamics. The analysis of the single waterbomb cell reproduced 

the expected behavior and leaves confidences for bigger waterbomb structures, such as cylindrical ones obtained 

through waterbomb tesselation. The retractable beam example showcases the possible applications of foldable 

structures, like retractable roofs and deployable solar pannels. In the continuity of this study, it is aimed to 

improve the algorithm, including actuated origami elements and nonlinear spring strain energy. Moreover, it is 

intended to generate more complex and larger structural devices to be studied. 
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