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Abstract. This work presents an efficient methodology for the optimization of functionally graded plates based 

on the use of surrogates. These models are an alternative to reduce the computational cost of optimization, 

efficiently approximating the results of numerical simulations. The surrogate was incorporated into an optimization 

methodology known as Sequential Approximate Optimization, where the surrogate is continuously updated and 

improved by the insertion of new points, enhancing the model approximation. This approach is applied to the 

design optimization of a functionally graded plate, maximizing the critical buckling load. The performance is 

evaluated in terms of accuracy and computational efficiency. 
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1  Introduction 

Functionally Graded Materials (FGM) are advanced composites, usually made of ceramic and metal, in which 

the volume fraction of their constituents varies smoothly along chosen directions. These materials were initially 

proposed as a solution for structures subjected to high temperatures, but now your applications are both diverse 

and numerous [1]. The variation in composition results in a gradual change in their properties, improving the 

performance of structures subjected to thermal and mechanical loads, but making structural analysis more 

complex. 

Seeking better performance of functionally graded structures, it is necessary to select both the materials and 

their gradation. After defining the materials, optimization techniques are used to explore the design space to find 

the optimal material gradation based on the results of computational methods that simulate the behavior of these 

structures. Many optimization techniques can be used to solve the optimization problem. Kou et al. [2] used 

Particle Swarm Optimization (PSO) to minimize the thermal stresses of different functionally graded structures. 

A hybrid PSO algorithm was used by Barroso et al. [3] to maximize the load factor and minimize the weight of 

laminated structures. Kim et al. [4] used a Differential Evolution (DE) algorithm to maximize the first three natural 

frequencies of a functionally graded beam. 

However, the high computational cost of the analyses can be a limiting factor in the optimization process. 

The use of these bio-inspired algorithms requires a large number of analyses to find the optimal design. Therefore, 

an alternative to reduce the computational cost of optimizing complex structures is to use surrogate models capable 

of efficiently approximating the results of numerical simulations. This work uses the Kriging surrogate model, 

which was incorporated into an optimization methodology known as Sequential Approximate Optimization 

(SAO), where the surrogate is continuously updated and improved by the insertion of new points, refining the 

model approximation. 
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2  Functionally Graded Plates 

Plates are three-dimensional flat structures whose thickness is much smaller than their two other dimensions. 

Various theories have been proposed to analyze this type of structure, such as the Classical Plate Theory and the 

First-Order Shear Deformation Theory. The theory used in this work was Redyy’s theory, also known as Third 

Order Shear Deformation Theory (TSDT). It was chosen for its ability to more accurately represent the distribution 

of shear deformations along the thickness of plates without a correction factors, unlike the previously mentioned 

theories. However, the displacement field it describes requires 𝐶1 continuity and is a challenge for traditional 

isoparametric elements. Therefore, alongside TSDT, the analysis method chosen was Isogeometric Analysis (IGA) 

based on Non-Uniform Rational B-Splines (NURBS), which ensures elements with high continuity.  

Gradation in functionally graded plates occurs based on the variation of volume fractions throughout the 

thickness of the plate. This variation can be described in various ways, and in this work, it is represented by B-

Splines [5]. Using this type of function is justified because it allows greater flexibility, or rather, greater control 

over the effective properties of the constituents of the structure, providing a broader design space. While the elastic 

properties are calculated using the Mori-Tanaka micromechanical model [6].  

3  Sequential Approximate Optimization 

The optimization method used in this work is PSO, a very popular meta-heuristic algorithm. The technique, 

based on the behavior of bird flock in search for food, aims to optimize nonlinear continuous functions. The 

algorithm starts by generating an initial swarm of random particles 𝑁𝑝 each particle 𝑗 is assigned a position 𝐱𝑗
(0)

 

and a velocity 𝐯𝑗
(0)

, at each iteration (𝑖) the particles move in the design space according to their velocity: 

𝒙𝑗
𝑖+1 = 𝒙𝑗

𝑖 + 𝒗𝑗
𝑖+1 (1) 

where: 

𝒗𝑗
𝑖+1 = 𝑤𝒗𝑗

𝑖 + 𝑐1𝑟1(𝒙𝑝,𝑗
𝑖 − 𝒙𝑗

𝑖) + 𝑐2𝑟2(𝒙𝑔,𝑗
𝑖 − 𝒙𝑗

𝑖) (2) 

where 𝑤 is inertia, 𝑐1 is the cognitive factor, 𝑐2 is the social factor, 𝑟1 and 𝑟2 are uniformly distributed random 

numbers between 0 and 1, 𝐱𝑝,𝑗
(𝑖)

 is the best position that particle j obtained during optimization and 𝐱𝑔,𝑗
(𝑖)

 is the best 

position of the particles in the neighborhood of particle 𝑗 obtained during optimization [3]. The main steps for the 

PSO optimization procedure are described in Fig. 1.  

Figure 1. Flowchart of PSO. 

The surrogate model adopted in this study was the Kriging model, first developed by mining engineer Danie 

Krige and introduced into engineering design by Sacks et al. [7], who applied the method to the approximation of 

computer experiments. It is a non-parametric interpolation method, implying that the training points are used in 

determining the unknown parameters. The model exactly interpolates the known values at the sampling points. 

Kriging has several variants, and its general form can be described as: 

𝑓(𝒙) = 𝑔(𝒙) + 𝑍(𝒙) (3) 

where 𝑓(𝐱) is the Kriging prediction, 𝑔(𝐱) is the global trend and 𝑍(𝐱) are its localized correlated deviations. This 

work adopts the Ordinary Kriging, where it is assumed that the global trend is unknown and constant, adopting 

the average (𝜇). 

The construction of the model begins with a sample dataset 𝐱 with observed responses 𝐲. The random 

variables are correlated with each other using the expression of the base function [8]: 
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𝑐𝑜𝑟[𝑌(𝒙(𝑖)), 𝑌(𝒙(𝑙))] = 𝑒𝑥𝑝 (−∑𝜃𝑗|𝑥𝑗
(𝑖)

− 𝑥𝑗
(𝑙)
|
𝑝𝑗

𝑘

𝑗=1

) (4) 

These correlations depend on the absolute distance between the sample points |𝑥𝑗
(𝑖)

− 𝑥𝑗
(𝑙)
| and the parameters 𝐩  

and 𝜽. Knowing these correlations, the Maximum Likelihood Estimator (MLE) method was used to determine the 

parameters, aiming to choose 𝜽 and 𝐩 to maximize the likelihood of 𝒚. Ultimately, we hope this minimizes the 

model's generalization error [8]. The PSO algorithm was used in this work to find the values of these parameters 

that maximize the likelihood function. 

The surrogate model was incorporated into Sequential Approximate Optimization (SAO), an approach 

proposed by Schmit and Farshi [9], where the surrogate is continuously updated and improved by adding new 

points primarily in promising regions, enhancing the model approximation. This formulation adopted a trust region 

approach, where the regions in which subproblems should be built and solved are continuously updated [9].  

However, in this work, a SAO approach based on adaptive sampling is used, which leverages the global 

response surface throughout the process. To generate the initial sampling of the planning space, the Latin 

Hypercube Sampling (LHS) algorithm is used, where a number of sampling plans are generated, and the one that 

provides the best uniformity is selected to construct the initial surrogate [8]. The responses of the planning space 

were evaluated with IGA. 

When implementing this strategy, it is important to adopt a criterion to add new sampling points. Thus, to 

improve the model's accuracy, the selection of new sampling points was done using Expected Improvement (EI), 

which calculates the amount of improvement we expect given the mean and variance [8]. This approach seeks to 

balance exploitation (local search) and exploration (global search), including points near the current optimum and 

points where the model error is large. The steps of this optimization procedure in which the SAO methodology is 

used are described in Fig. 2. 

Figure 2. Flowchart of SAO using Kriging. 

4  Numerical Example 

In this section, the SAO approach discussed earlier is used to optimize a functionally graded plate, and its 

results are compared with a high-fidelity model (HFM) and results from the literature. The mechanical properties 

of the materials used are shown in Tab. 1. 

Table 1. Material properties. 

Material E (GPa) 𝜈 𝜌 (kg/m³) 

 Al 70.00  0.3  2707 

 Al2O3  380.00  0.3  3800 

For the construction of the initial surrogate model, only 𝑛 = 5𝑚  sampling points are generated using the 

LHS approach. The surrogate is improved by adding new points until the maximum number of generations 𝑁𝑔𝑒𝑛 =

100 is reached or after 15 iterations of the SAO algorithm without solution improvement (𝑆𝑡𝑎𝑙𝑙𝑔𝑒𝑛). The Square 

topology is considered in the PSO, and the optimization parameters are 𝑆𝑡𝑎𝑙𝑙𝑔𝑒𝑛 = 15, 𝑁𝑔𝑒𝑛 = 100, 𝑁𝑝 = 30, 

𝜔 = 0.72, 𝑐1 = 1.5 and 𝑐2 = 1.5.  

For the optimization problem, 𝑁𝑟 = 10  runs were performed, and the metrics to characterize the approach 

are the average number of high-fidelity evaluations (𝑛̅𝑝)  and the Relative Difference (𝑅𝐷) to assess accuracy:  
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𝑅𝐷 = 
|𝑦𝑚𝑖𝑛 − 𝑦𝑜𝑝𝑡| 

𝑦𝑜𝑝𝑡
 (5) 

where 𝑦𝑚𝑖𝑛 is the best result found and 𝑦𝑜𝑝𝑡 is the best result from the HFM. All simulations were carried out on 

a computer running on an Intel i5-9400 CPU @ 2.90GHz, 6 cores, and 8 GB RAM. No parallelization procedure 

was adopted. 

The objective is maximize the buckling load of a simply supported square plate made of Al/Al2O3, with 

𝑎 ℎ⁄ = 10, subjected to a uniform uniaxial compressive loading 𝑁𝑥, as illustrated in Fig. 3a. A 16 × 16 cubic 

NURBS mesh, shown in Fig. 3b, used in the structural analysis. 
 

 

(a) Simply support FGM plate. (b) 16 × 16 cubic NURBS mesh. 

Figure 3. Simply support FGM plate and mesh used for the maximization of the buckling load. 

The gradation is defined by 9 control points along the thickness, symmetric with respect to the midplane. 

Thus, this problem has 5 design variables. A maximum percentage constraint of ceramic material is considered: 

𝑔(𝒙) =   𝑉̅𝑐(𝒙) − 𝑉̅𝑐,𝑚𝑎𝑥 ≤ 0,𝑤ℎ𝑒𝑟𝑒  𝑉̅𝑐(𝒙) =
1

ℎ
∫ 𝑉𝑐 𝑑𝑧

ℎ

2

−
ℎ

2

 (6) 

The optimization problem is given by: 

{
𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑁𝑐𝑟(𝒙)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑔(𝒙) ≤ 0
𝑤𝑖𝑡ℎ 0 ≤ 𝒙 ≤ 1

 (7) 

where 𝑁𝑐𝑟  is the critical buckling load. The problem was proposed by Do et al. [5], where a Deep Neural Network 

(DNN) was used as a surrogate model. Ten thousand sampling points were evaluated, with 80% used for training 

and 20% for validation. The authors considered three different cases, with 𝑉̅𝑐,𝑚𝑎𝑥 equal to 35%, 50%, and 65%. 

Table 2 presents the optimal designs found using the SAO approach and conventional optimization (PSO + 

IGA), while Fig. 4 shows the optimal gradations across the thickness for the three cases found by SAO. These 

results are compared with the best design found by the DNN [5]. The non‐dimensional buckling load is given by: 

𝜆𝑛𝑜𝑟𝑚 = 𝑁𝑐𝑟𝑎 𝐷𝑚⁄ , 𝑤ℎ𝑒𝑟𝑒  𝐷𝑚 = 𝐸𝑚ℎ3 12(1 − 𝑣𝑚
2 )⁄  (8) 

  

 

(a) 𝑉̅𝑐,𝑚𝑎𝑥 = 35%. (b) 𝑉̅𝑐,𝑚𝑎𝑥 = 50%. (c) 𝑉̅𝑐,𝑚𝑎𝑥 = 65%. 

Figure 4. Optimal gradation. 
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Table 2. Optimal design. 

Design 

variable 

 𝑉̅𝑐,𝑚𝑎𝑥 = 35%  𝑉̅𝑐,𝑚𝑎𝑥 = 50%  𝑉̅𝑐,𝑚𝑎𝑥 = 65% 

 Do et al. [5] HFM SAO  Do et al. [5] HFM SAO  Do et al. [5] HFM SAO 

1  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 

2  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 

3  0.3920 0.3999 0.3999  0.9880 0.9999 0.9999  1.0000 1.0000 1.0000 

4  0.0000 0.0000 0.0000  0.0000 0.0000 0.0000  0.4420 0.4500 0.4500 

5  0.0000 0.0000 0.0000  0.0000 0.0000 0.0000  0.0000 0.0000 0.0000 

𝜆𝑛𝑜𝑟𝑚  11.185 11.213 11.213  14.603 14.709 14.709  16.193 16.231 16.231 

𝑅𝐷  0.25% - 0.00%  0.73% - 0.00%  0.23% - 0.00% 

𝑛̅𝑝   1821 44   2223 48   1719 45 

The results obtained demonstrate that the surrogate model successfully reduced the computational cost of the 

optimization, decreasing the number of high fidelity evaluations when compared to evaluations performed in HFM 

and DNN. The surrogate also accurately predicted the buckling load, returning values very close to those of the 

HFM.  

5  Conclusion 

This work the use of Kriging as a surrogate model to reduce the computational cost of the optimization 

process for functionally graded plates. The surrogate model proved to be accurate and efficient for designs with 

functionally graded materials. Its application in the optimization of real structures can be quite advantageous, 

presenting great potential as a resource to reduce the high computational cost in designs of complex structures, 

making the optimization of these structures more feasible. 
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