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Abstract. This work proposes an innovative method that uses machine learning with computational Finite Element 

Analysis simulations to optimize the design of concrete slabs for rigid pavements subjected to moving loads with 

different parameters. The objective is to create a surrogate model that takes into account the uncertainties of weight 

and shape of the vehicle loading on the concrete slabs, to predict the stresses in the concrete slabs. Based on the 

results of realistic finite element models that consider the three-dimensionality of the multilayer problem analyses, 

machine learning techniques are used to train and validate a surrogate model. This model allows the analysis of 

stresses in concrete slabs under different conditions of vehicle load and pavement geometric and mechanical 

properties. Based on these analyses, it is possible to optimize the shape and thickness of concrete slabs to cope 

with the effects of uncertainties, thus ensuring adequate performance of the structure under a wide range of 

operating conditions. This approach allows for a more precise and efficient optimization of concrete slabs, taking 

into account the stochastic variables involved in the process. 
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1  Introduction 

The Jointed Plain Concrete Pavement (JPCP) is the most commonly used type of rigid pavement, consisting 

of Portland Cement Concrete constructed slabs, typically laid upon layers of bases and subbases. The JPCP is a 

solution where the slabs are constructed with closely spaced contraction joints [1], with dowel bars being used for 

load transfer across them. It is the cheaper to construct than the other types of rigid pavements, being recommended 

for lower volume truck routes, ramps, urban streets.  

Finite Element Analysis (FEA) is a computational numerical analysis method for obtaining approximate 

solutions for various engineering problems, its core idea being that any region can be modeled or analytically 

approximated by substituting it with an assembly of discrete elements [2]. By utilizing this tool, it is possible to 

create a model that simulates the passage of a vehicle axle load on constant speed over a 3 x 3 system of JPCP 

slabs, obtaining outputs such as stresses and displacements throughout the parts of the model. 

Multilayer Perceptron Neural Network (MLP) is a machine learning technique, consisting of an artificial 

neural network composed of an input layer, one or more hidden layers, and an output layer, where each layer 

consists of interconnected neurons that process input data to produce an output [3]. A Surrogate Model is an 

approximation technique used to replicate the behavior and substitute a computationally expensive simulation. By 

training data generated from the FEA models, the surrogate model can provide rapid predictions, while 

significantly reducing computational costs. 

In the present paper, a data set containing the outputs of stress in the traffic flow direction (𝜎𝑦𝑦) at the bottom 

surface of the central slab was extracted from the results of 400 of the FEA simulations, where the input parameter 

for each model was randomly generated based on typical values distribution found in the literature. These 
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parameters, such as geometric dimensions, load configuration, and material properties were stochastically varied 

to accurately represent a wide range of scenarios and conditions documented in existing studies. Afterwards, the 

data set was fed to a MLP Neural Network, building a MLP-based Surrogate Model, which can predict stresses in 

JPCP slabs in a less computationally complex way.  

 

Figure 1. Surrogate Model Fluxogram 

2  Methodology 

2.1 Stochastic Variables 

The input variables for each model were randomly generated to reflect a range of realistic conditions. All 

parameters are continuous variables following uniform distributions, except for the dowel diameter (ϕb) and 

number of dowel bars (nb), which are discrete variables following uniform distributions, and the lateral wheel 

wander (Dh), which is a continuous variable on normal distribution (sigma = 0.15 and u = 0.5) [4]. As it occurs in 

practicality, a subbase layer is not always utilized in rigid pavement design, so its respective variable varies 

between 0 and 1 as well. The interval for each parameter was defined based on typical values found in design 

manuals and rigid pavement literature, as summarized in Table 1. 

Table 1. Parameters description and variation 

Parameters Description Variation 

Lx Slab Width (m) [3.00 - 5.00] 

Ly Slab Length (traffic flow direction) (m) [5.00 - 7.00] 

hp Slab Thickness (m) [0.15 - 0.30] 

hb1 Base Thickness (m) [0.12 - 0.40] 

hb2 Subbase Thickness (m) [0, 0.12 - 0.40] 

Dh Lateral Wheel Wander (m) [0.00 - 1.00] 

ϕb Dowel Bar Diameter (mm) [32, 33, 34, 35, 36, 37, 38] 

nb Number of Dowel Bars per Joint [12, 13, 14, 15, 16, 17, 18] 

Ec Concrete Young Modulus (GPa) [20.00 - 40.00] 

Eb1 Base Young Modulus (GPa) [7.00 - 20.00] 

Eb2 Subbase Young Modulus (GPa) [0, 7.00 - 20.00] 

k Modulus of Subgrade Reaction (MPa/m³) [20.00 - 70.00] 

Axle Type of Axle [Single, Tandem] 

Dp1 Horizontal Spacing between Tires (m) [1.50 - 2.20] 

Dp2 Vertical Spacing between Tires (only Tandem Axle) (m) [1.00 - 1.50] 

Pp Tire Pressure (kPa) [200.00 - 700.00] 

F Load on Each Tire (kN) [23.00 - 67.00] 
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2.2 Area of Contact 

The loadings are considered to be distributed loads acting along a defined area of contact of each tire. Such 

area of contact (Ac), as suggested by Huang (2004), can be obtained by dividing the load on each tire (F) by its 

pressure (Pp). Its shape is assumed to be a rectangle with its length being equal to 1.205Ac (direction of traffic 

flow) and width 0.83Ac. 

2.3 FEA Models 

The FEA Model consists of a 3 x 3 JPCP system, with dowel bars placed throughout the transverse joints of 

the 3 central slabs (2, 5 and 8). Every slab is laid upon a base (and a subbase, in some cases), and the lowermost 

layer is considered to rest on a Winkler foundation. Tie constraint interactions were created to simulate the 

interaction properties between bottom surface of the slabs and top surface of the base, and to restrain relative 

movement along the longitudinal joints. The top surfaces of the slabs 2, 5 and 8 were partitioned as to represent 

the passage of the calculated Ac of the tire, and the loads were applied in sequential steps of the analysis. All the 

outputs (𝜎𝑦𝑦) were extracted from bottom of surface of the slab 5. The software ABAQUS 2020 was utilized to 

create and analyze every model. 

Figure 2. Example of a FEA Model. a) Assembly of the Model and Slabs numeration; b) Top view of deformed 

slab 5; c) Left view of deformed slab 5; d) Dowel Bar embedded into slab 
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2.4 Multilayer Perceptron Neural Network (MLP) 

The data set was split in 80% for training and 20% for testing, the input data set consisting of a 400 x 18 

matrix and the output consisting of a 400 x 1 vector. For the training set, a k-fold cross validation was done with 

k = 5. For the hyperparameters optimization, the technique utilized was Bayesian Optimization, being the loss 

function the mean of Mean Squared Error (MSE) from each fold. The activation function for the hidden layers was 

the Rectified Linear Unity (ReLU). The gradient-based optimizer utilized to determine the optimal parameters of 

the MLP is a variant of Adam [5] called AMSGrad [6]. Some regularization techniques were implemented: Early 

Stopping, Weight Decay and Batch Normalization [7]. With the model fitted, the Permutation Feature Importance 

technique was utilized to evaluate the importance of each feature with n = 1000 permutations. 

 

3  Results 

The metrics obtained for the model are R² test:  0.82, RMSE (Root Mean Squared Error) test:  35.111, MSE 

test (Mean Squared Error): 1232.795, MAPE (Mean Absolute Percentage Error) test: 37.70 %, SD (Standard 

Deviation) of APE (Absolute Percentage Error): 45.29 %, Mean MSE - Validation: 1954.00, SD MSE - Validation: 

460.17. The importance of each feature in the model is presented in Table 2, where the second column indicates 

the Mean of the increase of MSE after the permutation. The graphic is displayed in Fig.3, the horizontal axis being 

the observed value and the vertical axis predicted by the surrogate model. 

Table 2. Results of the Permutation Feature Importance  

Parameters Mean SD 

 hb2  4449.26 41.79 

 hb1  3227.59 43.05 

 F  1112.6 48.05 

 Ec1  1026.05 49.74 

 Eb1  791.87 60.18 

 k  481.45 68.59 

 Single_Axle  352.43 80.17 

 Tandem_Axle  327.03 95.16 

 Dh  267.91 110.57 

 Ly 203.6 116.3 

 Dp2  147.77 119.8 

 Pp1  75.87 122.64 

 Lx 58.58 178.96 

 Eb2  44.67 248.9 

 db  26.42 262.47 

 nb  11.11 300.84 

 Dp1  -3.2 733.61 

 hp  -27.44 963.59 
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Figure 3. Graphic representing Observed x Predicted for the output Variable 

4  Conclusions 

It is observed that the model could attain 0.82 as a value for R², indicating an acceptable level of accuracy in 

its predictions, which makes the model, even though still partial, effective as a Surrogate Model for the analysis 

of stresses in traffic flow direction for concrete pavement slabs. In future works, it will be possible to further 

improve the model by increasing the numerical data set or by creating surrogate models for other outputs, such as 

vertical displacements or stresses in other directions. 

After the implementation of the Permutation Feature Importance technique, it was expected that the slab 

thickness (hp) would be a much more important parameter, with a lesser SD, but as the results are still partial, it is 

possible to assume that, with a higher number of FEA simulations, it will be possible to obtain a more satisfactory 

result. 
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