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Abstract. Deep Neural Networks (DNNs) have shown significant advances in solving time-dependent partial 

differential equations with smooth coefficients, mainly in high-dimensional and Big-Data problems. However, 

despite this, they could have poor accuracy. Uncertainty analysis of reservoir simulations offers substantial 

difficulties because they are low-dimension problems and have heterogeneous reservoir properties and coefficients 

varying in time. Moreover, they belong to the Small-Data problem class. There is no clear advantage of DNNs 

over traditional algorithms with those collective properties. Physical Informed NNs (PINN) used to be the main 

driver of Machine Learning applications of scientific and engineering problems. However, it failed to solve 

reservoir heterogeneous problems, making it necessary to homogenize subdomains before submitting problems to 

PINNs. As heterogeneity changes with time, successive homogenization of selected regions should be done, 

introducing new difficulties. In this paper, we propose to use Information-Theoretic Machine Learning (ITML) to 

solve the above set of problems, firstly performing a stochastic upscaling that reduces the cardinality and the 

probabilistic dimension of the original reservoir models and then solving the upscaled model by traditional 

methods. The upscaling is forced to obey existing geostatistical properties and physical laws, which is more 

effective than the posterior verification as done by PINNs. Solving the reduced problems by direct methods adds 

the advantage of more reliable solutions not guaranteed by DNNs solutions in the Small-Data regime. Results that 

contemplate time-varying coefficients will be described in further publications. 

Keywords: Stochastic Reservoir Simulation, DNN, PINN, ITM, upscaling 

1  Introduction 

Deep Neural Network (DNN) models have shown remarkable results when applied to high dimensional 

(hundreds of phase states), Weinan [1], and Big-Data (hundred thousand steps) problems, despite their low 

accuracy relative to traditional models (finite element, finite volume). 

Concerning generalization error, the classical statistical learning theory establishes that the optimal 

generalization loss requires selecting a model capacity that attains the best balance between underfitting and 

overfitting, that is, between not having enough capacity to model the training data accurately and having too much, 

thus prone to adapt to closely to the training data, at the expense of generalization. However, it has long been 

observed that DNN models can obtain good generalization performance even though measures (typically, the 

cross-entropy) exhibit characteristics of overfitting, meaning there is a third regime for massively 

overparameterized models. The transition for this third regime, the interpolation threshold, is characterized by a 

decrease in the generalization error just after its peak.  Bornschein [2] shows that large DNN models, over the 

interpolation threshold, can generalize well even for Small-Data problems. 
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Due to the operators' complexity and cardinality, real-world stochastic reservoir problems should operate 

with about two hundred elements of the supervised set. Instead of using a large DNN model to account for 

generalization, this work develops an Information-Theoretical Machine Learning to upscale the reservoir model 

and solve it using traditional methods, thus overcoming too the remaining accuracy problem encountered in DNN 

models. 

2  Methodology 

Let the reservoir be described by a set of 𝑁𝑅 microscale geostatistical realizations of a random field 

collectively aggregated into an ensemble 𝑋, identifying fine scale meshes with N cells. In general, 𝑋 contains more 

information than necessary for the accurate solution of a given reservoir simulation problem. The goal is to reduce 

this ensemble into an ensemble 𝑌 over 𝑛 < 𝑁 coarse scale meshes and possibly 𝑛𝑅 < 𝑁𝑅 macroscale realizations. 

If that reduction is possible, the answer to the specific problem can be encountered with less computational effort 

and reduced accuracy. Ensemble 𝑋 can be as detailed as a cellular mesh, containing microscale information that 

can be compressed into a desired macroscale for the specific objective. 

If the properties described by 𝑋 can be compressed into 𝑌 for the solution of a specific problem, what needs 

to be determined is what information in 𝑋 must be statistically preserved in such a way that distortion in the desired 

response statistic can be controlled. At least two measures therefore need to be established. The first is the measure 

of the fidelity of the representation of 𝑋 by 𝑌, and the other is the statistical accuracy of the desired response. The 

physics at the microscale and that of the macroscale need not be the same. 

The temporal scale will not be explicitly addressed in this text, without losing generality. This will be done 

in a future text when the methodology is applied to history matching as a component of stochastic control of 

reservoir management and development. 

2.1 Mutual information 

Replacing the 𝑋 field with a smaller 𝑌 field implies the possibility of assigning the same value to large regions 

of the domain. A mutual information indicator measures the average information that knowledge of 𝑌 can provide 

about 𝑋 and vice versa. 

The hypothesis that the large regions of the heterogeneous domain of interest can be assigned the same values 

makes it possible to describe the random field 𝑋 by the smaller field 𝑌. A measure of the ability of 𝑌 to approximate 

𝑋 can be given by the mutual information indicator given by, 

 

          𝐼(𝑋, 𝑌) = ∬ 𝑝𝑋𝑌(𝑥, 𝑦)𝑙𝑜𝑔 
𝑝𝑋𝑌(𝑥,𝑦)

𝑝𝑋(𝑥)𝑝𝑦(𝑦)
𝑑𝑥𝑑𝑦,                                                              (1) 

where 𝑝𝑋𝑌(𝑥, 𝑦) is the joint density of (𝑋, 𝑌), and 𝑝𝑋(𝑥) and 𝑝𝑌(𝑦) are the respective marginal distributions. Its 

minimum value is zero when the two fields are independent, that is, 𝑝(𝑋, 𝑌) = 𝑝𝑋(𝑥)𝑝𝑌(𝑦). Its maximum value 

is known as the entropy of 𝑋, which occurs when the two fields are identical 𝑋 ≡ 𝑌. Defining joint entropy as the 

indicator itself, and developing, 

  𝐻(𝑋, 𝑌) = − ∫ 𝑝𝑋(𝑥)𝑙𝑜𝑔 𝑝𝑋(𝑥)𝑑𝑥   + ∬ 𝑝𝑋𝑌(𝑥, 𝑦)𝑙𝑜𝑔 
𝑝𝑋𝑌(𝑥, 𝑦)

𝑝𝑋(𝑥)𝑝𝑦(𝑦)
𝑑𝑥𝑑𝑦 .                       (2) 

 

The first term in the second member of eq. (2) is the entropy of 𝑋, 

 

                                                             𝐻(𝑋) = − ∫ 𝑝𝑋(𝑥)𝑙𝑜𝑔 𝑝𝑋(𝑥)𝑑𝑥,                                                                     (3) 

 

while the second is the conditional entropy. 

 

In information theory, 𝐼(𝑋, 𝑌) is also known as the information transmission rate 𝑅 of a continuous channel. 
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2.2 Interscale response fidelity 

The measure of fidelity is known as the measure of distortion of the response provided by the two fields. This 

measure can be scalar, vector, or matrix. Without loss of generality, it will be assumed that the measure is a scalar, 

since the other measures must always be transformed into one or a set of scalar measures. For example, let the 

distance be given by, 

 

                                                                          𝑑(𝑋, 𝑌) = (𝑟(𝑋) − 𝑟(𝑌))2,                                                                          (4) 

where 𝑟(𝑋) is the response due to the microscale and 𝑟(𝑌) to the macroscale, usually functions implicitly defined 

by a numerical simulator. For each given stance defined as in eq. (4), there will be a need for its gradient relative 

to 𝑌.There are no statistics in eq. (5), that is, the random functions 𝑟(𝑋): 𝑅𝑁 → 𝑅, e 𝑟(𝑌): 𝑅𝑁 → 𝑅 must be 

understood as an ensemble, or set, of samples, or realizations, 𝑟(𝑋𝑖), 𝑖 = 1, … , 𝑛𝑅. In this sense, 

𝑑(𝑋, 𝑌): 𝑅𝑁 × 𝑅𝑁 → 𝑅+ is a collection of 𝑁𝑅 × 𝑛𝑅 samples in one dimension. Furthermore, it will be admitted, 

without loss of generality, that the microscale is represented only by a random variable 𝑌. This means that the 

macromesh has a single element, cell or block, with a single property that, essentially, is the best stochastic 

representation. The distance, in this case, will be in the application of 𝑑(𝑋, 𝑌): 𝑅𝑁 × 𝑅 → 𝑅+. 

It is important to note, at this stage, that no reference is made to the physics that prevails in the geometric 

domains. It is possible, for example, to evaluate 𝑟(𝑋) in complex carbonate physics, using Darcy-Stokes or Stokes-

Brinkman with Darcyan fractures, or even in compositional models, and 𝑟(𝑌) with Black-Oil physics. 

The objective is twofold. First, find a compression scheme from 𝑋 to 𝑌 that leads to a minimum distortion of 

the desired response, and then determine its value. Determining the optimal transformation involves evaluating 

the posterior distribution of 𝑌, 𝑝𝑌(𝑦). For the stochastic scheme to be complete, it is necessary to evaluate the 

distortion in a probabilistic way. One possibility is that the distortion, 𝐷, be the distance’s mathematical 

expectation, but more meaningful functions for certain applications, such as percentiles and risk measures on the 

density’s tails, can be chosen, 

 

                                                                                      𝐷 = 𝐸[𝑑(𝑋, 𝑌)].                                                                                  (5) 
 

By hypothesis, the field describing the microscale is given by the ensemble of 𝑁𝑅 geostatistical realizations. 

Thus, evaluation of the distortion, its expectation, or any other convenient stochastic measure, must be done with 

the Monte Carlo technique, or some simplifying variant. Since 𝑋 is already sampled it is possible to write, using 

the relation between the joint density and the conditional density, 

 

                        𝐷 = 𝐸[𝑑(𝑋, 𝑌)] = ∑ 𝑝𝑋𝑌(𝑋, 𝑌)𝑑(𝑋, 𝑌)

𝑋,𝑌

= ∑ 𝑝𝑋(𝑋)𝑝𝑋𝑌(𝑌|𝑋)𝑑(𝑋, 𝑌)

𝑋,𝑌

,                                  (6) 

where 𝑝𝑋𝑌(𝑌|𝑋) is the conditional density of 𝑌. Its minimum, with respect to 𝑝𝑋𝑌(𝑌|𝑋), will be a Dirac’s delta 

function that assigns to each 𝑥 of 𝑋 the 𝑌 that minimizes 𝑑(𝑋, 𝑌).  

This is an optimization problem that requires more computational effort than desired. Instead, we try to solve 

the augmented Lagrangian with the restriction that the indicator 𝐼(𝑋, 𝑌) is less than or equal to a pre-specified 

value 𝐼(𝑋, 𝑌).  The constrained minimization problem is used to find using the Deterministic Simulating Annealing 

algorithm in a parallel form (see Costa [3,4] for details). The algorithm carries a high computational cost, but it 

finds the 𝑝𝑋𝑌(𝑌|𝑋) in a nonparametric form, does not require any assumption about its functional form. The 

distribution 𝑝𝑋𝑌(𝑌|𝑋) has the form of a Gibbs distribution. 

The ensemble 𝑌, and the probability of each one of the 𝑛𝑅 coarse-scale realizations can solve any uncertainty 

reservoir simulation problem in inexpensive, accurate, and correct predictions. The macro ensemble model 

achieves an exceptional generalization for Neumann boundary conditions (different number and disposition of 

wells and their rates). 

3  Applications 

The above methodology is applied to a two-dimensional reservoir with a two-phase flow of oil and water and 

depletion by water injection. 



Template file for CILAMCE-2024 full-length paper (STOCHASTIC UPSCALING OF PETROPHYSICAL PROPERTIES) 

CILAMCE-2024 

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 

 

     
Figure 1 - Microscale (15x15) and microscale mesh (5x5) 

 

The reservoir has a 15 × 15 cells upscaled for 5 × 5 cells as shown in Figure 1. The permeability realizations 

in the X, Y, and XY directions were estimated from a 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(245.5896, 304.3432), and the correlation 

matrix is given by: 

 

The porosity is constant and equal to 0.25, the viscosity of water is 1 𝑐𝑃  and that of oil is 10 𝑐𝑃, the gravity 

of water is 1000 𝑘𝑔/𝑚3 and that of oil is 700 𝑘𝑔/𝑚3. The initial pressure in the reservoir is 1 𝑏𝑎𝑟 and the fluid 

is incompressible. There is one injection well, and four production wells, one in each corner. The injection well 

operates with a rate of 0.5 𝑚3/𝑑𝑎𝑦. The wells operate at bottom-hole pressure of 1 𝑏𝑎𝑟. The production period is 

600 𝑑𝑎𝑦𝑠, with measurements taken every 120 𝑑𝑎𝑦𝑠. 

A set of  𝑁𝑅 = 1000 micro realizations are given. The procedure starts with simulating 1000 realizations of 

the fine grid. These are the only simulations of the fine grid. 25 upscaling operations were performed, one for each 

macrocell, with Dirichlet boundary conditions. The final number of microscale realizations used was 𝑛𝑅 = 10. 
The computational cost was significantly reduced.  

The problem is determining the new field of absolute permeabilities for the coarse grid given in Figure 1. 

Each set of 3 × 3  cells are upscaled to one microcell. 

The reservoir simulations used in this example were performed with MRST-2017 and the upscaling was done 

with the values taken from the simulations in a single-phase (water) problem when the velocities were in a steady-

state regime. 

Figure 3 shows the cumulative oil and water of the original given models and the upscaled models. To 

compare the impact of the proposed methodology, the flow of water and oil from the wells was analyzed at both 

scales. 

It should be observed that the wells are located at the center of the corner cells in the two grids. This means 

there are substantial errors in the location of the four wells in the macro models. This induces some disagreements 

in the production over time. However, the cumulative production of the reservoir agrees well. 

 

 
Figure 2: Quantized probability density and corresponding cumulative distribution of one macrocell. 
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Figure 3 – Cumulative oil and water of the production wells. 

4  Conclusions 

The stochastic upscaling works well as shown in the two-dimensional application above and in similar small 

examples not shown in this paper. It remains to solve the problem of downscale to capture fluid velocities, 

saturations, and pressures in the microcells. 
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