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Abstract. In computational fluid dynamics, numerical simulations produce reliable and accurate results but incur
a high time and computational cost investment. Numerical data-driven models tend to be more computationally
efficient but lack the accuracy of numerical simulations and, in some cases, present numerical phantoms, small
fluctuations caused by numerical issues. We propose using two modern machine learning techniques in a sequence:
a surrogate model for the fluid flow coupled to a super-resolution diffusion probabilistic model. The second model
aims to improve the accuracy of predictions produced by the first one. We described a simplified version of what
those models could produce together, exemplified by the Rayleigh-Bénard convection problem. The experiments
show that this technique works for denoising and the downscaling case examples.
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1 Introduction

Super-resolution (SR) techniques target the improvement of images that can only be obtained with lower
quality for many reasons. Surrogate models aim to reproduce the dynamics of a certain physical system while
eventually incurring a certain level of error. Their benefit is the reduced computational complexity, which makes
them faster than the computation of the full high-fidelity dynamics. Modern machine learning techniques for
surrogates of fluid flows have shown great performance, see Vinuesa and Brunton [1].

Data for training such surrogates may be low-fidelity due to the offline computational cost. What also tends
to produce low-fidelity predictions. Thus, different techniques may be employed to improve the quality of such
predictions. A recently proposed one is Shu et al. [2], whose goal is to reconstruct high-fidelity images (akin to
images produced by Direct Numerical Simulation - DNS) from low-fidelity predictions of turbulent fluid flows
produced by techniques such as Large Eddy Simulations (LES), Reynolds Averaged Navier-Stokes (RANS), their
combination RANS-LES, or functional sub-grid models.

We take a different approach, proposing using surrogate models produced by machine learning coupled with
a super-resolution technique adapted from Shu et al. [2]. Our primary interest is in surrogate models for parametric
models of fluid flows (eventually described by systems of partial differential equations - PDEs). Our surrogate
is trained similarly to the one described in Guo and Hesthaven [3], Fresca and Manzoni [4]. The goal is to be
able to reproduce the dynamics of a fluid flow driven by the system of equations of interest for an unseen (in the
training stage) parameter. Our goal is to couple the predictions produced by the surrogate model as input for the
already trained super-resolution technique, aiming to produce images with higher accuracy when compared to their
true value (test data) than just the surrogate prediction. The super-resolution machine learning model must also
be trained with the same data as the surrogate to achieve this goal. The full description of the surrogate model

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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construction can be found in Rochinha et al. [5] or in a preprint from part of authors of this current work, Cortes
et al. [6]. In the present work, we describe a simpler version that uses the test data selected for the surrogate
model as input test data for the super-resolution model instead of generated predictions from the test data. This
simplification speeds up the implementation of a computational code to assess the SR models’ efficiency while
reducing the complexity of the description of both techniques, thus focusing on the essential aspects of the SR
proposed usage.

In order to exemplify the method, we choose the Rayleigh-Bénard (RB) problem. For a recent review on
the challenges of this important thermo-convection problem see Song et al. [7]. We construct two datasets for
training and testing the associated surrogate model and we use such datasets for training and testing the model that
performs the image resolution improvement. On a future work, in preparation, we intend to describe in details
the full system of surrogate and super-resolution models coupled, showing the accuracy at each stage, i.e., the
produced predictions from the surrogate and their reconstructions via the SR technique.

2 Methodology

In this section, we describe the RB problem formulation, the process of generating data for training and
testing the SR model, the super-resolution model’s theoretical aspects and its application.

2.1 Problem Setup

The Rayleigh-Bénard (RB) convection problem is defined here as the coupling of the incompressible Navier-
Stokes and the energy (heat) equations, Griebel et al. [8]. Using the dimensionless variables,

x∗ =
x

L
, t∗ =

t

L/U0
, u∗ =

u

U0
, p∗ =

p

ρ U0
2 , θ∗ =

gβ∆TL3

ν2
, (1)

with x the Cartesian coordinates, t time, u the velocity, p the pressure, ∆T = T − T0 the temperature difference
(assuming T0 as the reference temperature at the top of the domain), U0 the reference velocity, L the reference
length, g the gravitational acceleration, ρ the density, β the thermal expansion coefficient, and ν is the kinematic
viscosity. From now on, we will drop the superscript ∗ in the equations. Therefore, the system of equations is
written in dimensionless form as

∇ · u = 0, (2a)

∂u

∂t
+ (u · ∇)u = −∇p+

√
Pr

Ra
∇2u+ θ e2, (2b)

∂θ

∂t
+ (u · ∇)θ =

1√
Ra · Pr

∇2θ, (2c)

where e2 is the canonical unitary vector in y direction, eq. (2a) is the continuity equation, eq. (2b) is the momentum
equation, and eq. (2c) describes the energy equation in terms of the thermal buoyancy. All the fields are functions
of (t,x), with x ∈ Ω ⊂ R2. The dimensionless numbers

Pr =
ν

α
, Ra =

gβ∆TL3

να
(3)

represent the Prandtl and Rayleigh numbers, respectively, with α being the thermal diffusivity. Regarding the
boundary conditions, for a square domain Ω, we have no-slip for u and prescribed θ on top and bottom and
periodic conditions in the horizontal direction. The initial condition is zero velocity in the whole domain, and a
constant gradient energy profile pointing downward is added with a small seeded Gaussian random disturbance to
trigger the instability.
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2.2 Dataset Generation and Processing

The RB governing equations are discretized by a spectral method using the open-source library Dedalus,
Burns et al. [9]. The domain Ω has dimensions 1 by 1, with 2562 grid points, and we select a Fourier basis in the
x direction and a Chebyshev basis in the y direction. All simulations are performed from time 0 to 80 with a fixed
time step of 1× 10−3 with a 2nd-order, 2-stage, Diagonally Implicit Runge–Kutta (DIRK) method, for Pr = 0.72
and Ra = 5× 106. Details on how to solve the RB problem numerically are found in Griebel et al. [8]. Snapshots
of the dynamics are taken every 0.25 time instants, thus generating 321 snapshots per simulation. As outputs,
both buoyancy and vorticity are calculated, but we selected only buoyancy data to be used in the SR technique.
In order to generate sufficient training data, we employed 20 different seeds on the Gaussian random perturbation
that triggers the instability, generating completely different dynamics for each seed. Additionally, three seeds are
used to generate test data.

Each time instant of the dynamics corresponding to an image of 256 by 256 grid points is reshaped to a vector
of dimension 65536. Thus, a description of the dynamics for each simulation (each seed) is a matrix of dimension
65536 (corresponding to space) by 321 (corresponding to time) - organized in temporal order. We then construct
a large snapshot matrix, as in the surrogate model’s algorithm. Such a matrix is the concatenation of all matrices
previously described, i.e., we concatenate the dynamics corresponding to all seeds in a single large matrix in the
same order in which they are constructed. This large snapshot matrix is the training dataset for the surrogate model
and also the super-resolution one. The same approach can be used to assemble a test dataset from concatenating
matrices corresponding to the dynamics associated with test seeds. We are then ready to train the super-resolution
model.

2.3 Mathematical Description of the Super-resolution method

The super-resolution method here described is based on a denoising diffusion probabilistic model (DDPM). A
DDPM is a Markov chain-based generative model that, starting from a sample of a standard Gaussian distribution,
reconstructs an original sample. The model can reverse a Gaussian diffusion process by progressively estimating
a transition function pθ, where θ are learnable neural network parameters. Let x0 be the data sample to be recon-
structed, that is, the final result. The reconstruction procedure, also called a backward diffusion process, can be
represented as:

pθ (x0:T ) = p(xT )

T∏
t=1

pθ (xt−1|xt) , (4)

where T is a large enough step for the sample to be reduced to a standard Gaussian distribution in the forward
process, and with xT = N (xT ; 0, I), where N (x;µ, βI) is a Gaussian kernel with mean µ and variance βI , I
being the identity matrix. The probability transition pθ (xt−1|xt) is chosen as:

pθ (xt−1|xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) . (5)

The transition functions µθ and Σθ are learned through the training process, in which given a high fidelity image
xstart, Gaussian noise is progressively added to the data until it is reduced into random noise. This process is
called a forward diffusion process. Starting from a high-fidelity sample, the forward process can be constructed as
follows:

q (x1:T |xstart) =

T∏
t=1

q (xt|xt−1) , q (xt|xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (6)

where β1, . . . , βT is a progressive variance scaling factor; and q is a probability transition function. From the final
sample of this process, a reconstruction process is attempted, the loss is evaluated, and the parameters in θ are
updated. In principle, the loss function to be minimized is the negative log-likelihood, − log pθ(xstart), which is
computationally intensive, and whose gradient can be hard to calculate. Instead, we follow the work of Ho and
Salimans [10], showing one can instead minimize the following function:
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Lsimple
t = Et∼[1,T ],xstart,ϵ

[∥∥ϵt − ϵθ
(√

ᾱt xstart +
√
1− ᾱt ϵt, t

)∥∥2] , (7)

where αt = 1− βt, ᾱt =
∏t

i=1 αi, ϵt ∼ N (0, I) is the standard Gaussian noise sampled at time t, and ϵθ (·, ·) is
the reconstruction of the model, given

√
ᾱt xstart +

√
1− ᾱt ϵt and t as inputs.

2.4 Application of the Technique

The diffusion method described in section 2.3 is then applied to the training data, following the steps in Shu
et al. [2], but without the guided diffusion procedure. For evaluation, we execute experiments applying the trained
diffusion super-resolution model on out-of-sample test data of three forms: downscaling, Gaussian denoising,
and Salt-and-pepper denoising, described in what follows. Moreover, remember the description of buoyancy in
section 2.1 whose values are between 0 and 1. Given the colormap chosen to visualize the figures in this work,
pixels representing buoyancy around 0 are close to blue, while the ones around 1 are close to orange.

In the downscaling case, we first reduce the resolution of the original test sample 16 times (from 256 by 256
to 16 by 16). Then, we apply nearest-neighbour interpolation to upscale back to the original size. We apply the
super-resolution diffusion model over such images that have passed through upscaling. For the Gaussian denoising
case, we add a different realization of Gaussian noise K to every image, K ∼ N (0, 0.5 ∗ I), then reconstruct
them via the model.

Finally, for Salt-and-pepper denoising case, the ”salt-and-pepper” noise works as follows: for each pixel of
an image, a random number between 0 and 1 is draw with uniform probability. If its value is below 0.05, the
pixel is redefined as 0. If its value is above 0.95, the pixel is redefined as 1. For any other value, the pixel is
not modified. As in the other two cases, after the images in the test dataset suffer from this noise, we reconstruct
them via the diffusion model. We observe the model’s results over such three cases in section 3. The training of
the super-resolution model is performed with an NVIDIA A400 GPU, along 300 epochs, for about 16 hours. We
made use of the code in Shu et al. [11] associated to Shu et al. [2], written in the PyTorch framework, applying the
ADAM optimizer, with a constant learning rate of 2× 10−4, and batch size of 12.

3 Results

We conducted three experiments described in section 2.4 to evaluate the model’s accuracy. For each experi-
ment, we pick a different set of 20 images, corresponding to 20 contiguous time instants in sequential order of the
dynamics. We show the ground truth, the input image - corresponding to the noisy or down-scaled version of the
corresponding ground truth, the reconstruction via the super-resolution model, and the absolute error between the
reconstruction and the ground truth.

For the downscaling case, in which the method softens and hides the original information, results can be
seen in Fig. 1. We observe that the model can reconstruct the original dynamics. More significant errors in the
reconstruction occur in colder regions of the dynamics. For the second experiment, model can perform images’
denoising, but it produces larger errors for the buoyancy on the top and bottom of the domain, where boundary
conditions are applied. The results can be seen in Fig. 2.In the third experiment, with the added salt-and-pepper
noise, the model is also to reconstruct the original dynamics, and again, larger errors are seen in the top and bottom
parts of the domain, see Fig. 3.

4 Conclusions

We have shown that a diffusion-based super-resolution model can reconstruct the original dynamics from
noisy images or the ones passed through downscaling. Although non-negligible errors may occur, most where
the boundary conditions are applied, using such a technique in conjunction with a surrogate model is promising.
First, because the level of disturbance predictions via surrogate models produce, see Cortes et al. [6], seem to
be lower than the disturbances we used in this current work. Second, the issue of boundary conditions may be
better treated by introducing a residual-based physics-informed super-resolution technique, which is the subject of
ongoing work.
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Figure 1. Rayleigh-Bénard dynamics associated to the downscaling case.
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Figure 3. Rayleigh-Bénard dynamics associated to the salt-and-pepper noise case.
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