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Abstract. Phase-field modeling has emerged as a promising approach for modelling crack propagation. Different
from Griffith’s theory, which deals with discrete cracks, phase-field modeling transforms cracks into diffusive
entities that propagate within a defined region, regulated by a length scale parameter. This methodology introduces
a phase-field variable as a novel nodal degree of freedom, governed by an additional equation integrated into the
model. This variable quantifies the damage of the material at each point, with zero representing intact material
and unity indicating complete damage. However, the practical implementation of phase-field modeling presents
significant computational challenges. Its requirement of very refined meshes makes the process computationally
expensive. In this context, machine learning techniques can be used to simulate the constitutive model and ensure
that the process enhance efficiency. The article aims to use the machine learning technique to train a neural
network capable of simulating the constitutive behavior of a phase-field model. The validation of this approach
will be carried out by comparing its results with those obtained through finite element numerical analysis. All
simulations will be conducted using the INSANE software.
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1 Introduction

The theoretical development of fracture mechanics took its first steps with Griffith’s theory that considers
an initial crack in the body evolves when the energy of that body reaches to the critical energy release rate [1].
Although very promising, this theory had limitations such as dependence on an initial crack and the inability to
describe the crack path. After a long journey taken by the scientific community, phase-field models have emerged
as a robust alternative that can overcome these limitations. These models can detect crack nucleation and describe
its path with no explicit representation, by using a continuous field variable (ϕ) that represents the damage of a
material point and creates a smooth transition between between the undamaged (ϕ = 0) and the fully damaged
material (ϕ = 1). For that, a length scale parameter is employed in order to define the size of that transition region.
Despite their advantages, phase-field modelling faces significant computational challenges. Since the need for very
refined meshes for accurate analysis makes the process computationally expensive. In this context, artificial intel-
ligence (AI) offers a promising solution to mitigate these challenges. Through machine learning (ML) techniques,
that interpret external data, learn from it, and use this learning to achieve specific goals. A very widely applied ML
technique is neural networks (NN), which consists of computational models inspired by the biological structure of
neurons. Artificial neural networks (ANN) can significantly reduce the computational cost in finite element simu-
lations [2]. Neural Network-Based Constitutive Models (NNCM) can effectively model the mechanical behavior
of materials using stress-strain data, material theory, and additional information [3]. The purpose of this work is
to present the using of a Multilayer Feedforward Neural Network, also known as a Multilayer Perceptron (MLP),
to predict phase-field values based on associated stresses and strains values. Through this approach, it is aimed to
obtain a computational more efficient way to obtain the values for the field variable.
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2 Phase-field models

The phase field models are based on two essential functions: the crack surface density function (γ(ϕ,∇ϕ)),
responsible for smear the Grifith’s sharp crack over a smoothed region, and the energetic degradation function
(g(ϕ)). Wu [4] has proposed a generalization for (γ(ϕ,∇ϕ)):

γ(ϕ,∇ϕ) = 1

C0

[
1

l0
α(ϕ) + l0 | ∇ϕ |2

]
(1)

where α(ϕ), known as the geometrical crack function, is a monotonically increasing function that determines
how the shape of the smoothed region and must satisfy α(0) = 0 and α(1) = 1, C0 is a constant calculated
by C0 = 4

∫ 1

0
α1/2 dϕ. In order to prevent crack in compressed regions, phase-field models also incorporates an

additive decomposition into the strain energy density ψ(ϵ), in such way that.

ψ(ϵ) = g(ϕ)ψ+
0 (ϵ) + ψ−

0 (ϵ) (2)

The counterpart ψ+
0 represents the strain energy density that comes from traction and ψ−

0 from compression.
It is important to emphasize that split is applied only to anisotropic models. In isotropic models, the function
g multiplies the entire strain energy density function. In phase-field models, those isotropic and anisotropic are
related to that split between compressed and tractioned regions, not to the material properties. Therefore, the total
energy functional that describes the fracture problem, considering phase-field models, is given by:

Et =

∫
Ω

ψ(ϵ(u), ϕ) dV +

∫
B

Gcγ(ϕ,∇ϕ) dV −
∫
Ω

b · u dV −
∫
∂Ω

t · u dA (3)

where Ω is the body domain, B is the degraded domain, Gc is the critical energy release rate, u is the
displacement vector, and b and t are the body and surface forces, respectively. Thus, according to Wu [5], the weak
form for the phase-field model equations is expressed as:

{∫
Ω
σ : δϵ dV = δPext , com δγ = 1

C0

[
1
l0
α′(ϕ)δϕ+ 2l0∇ϕ · ∇δϕ

]
∫
B

[
g′(ϕ)ψδϕ+Gcδγ

]
dV ≥ 0

(4)

The data used to train the artificial intelligence model in this work were based on the anisotropic constitutive
model of Miehe et al. [6]. Due to the spectral decomposition of the strain tensor (See eq. 5, 6 and 7), this model
can completely supress cracks in compressed regions. More details about this constitutive model can be found in
the work of Miehe [7] and Leão [8].

ϵ =

3∑
n=1

ϵnpn ⊗ pn = ϵ+ + ϵ− (5)

ϵ+ =

3∑
n=1

⟨ϵn⟩+pn ⊗ pn (6)

ϵ− =

3∑
n=1

⟨ϵn⟩−pn ⊗ pn (7)
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3 Machine Learning models

Machine Learning, as defined by Samuel in the late 1950s, involves the development of algorithms that enable
computers to learn from data without explicit programming. Today, ML is recognized as a subset of artificial
intelligence that designs algorithms capable of identifying patterns in data to generalize and predict future events
with high accuracy. This capability makes ML suitable for solving complex problems that traditional methods
cannot effectively address [9–12].

In this study, the focus was on Supervised Learning Algorithms, which require labeled training data to learn
tasks. These algorithms analyse input features (attributes) to predict target values (labels) by estimating the prob-
ability of the label given the features. The research explored the feasibility of predicting the Phase Field in a
numerical simulation using Artificial Neural Network, which is briefly explained.

Artificial Neural Networks (ANNs) are computational models inspired by the central nervous system of living
beings. They consist of numerous simple processing units called neurons, which work in parallel to store and
utilize knowledge. ANNs are effective in pattern recognition tasks, making them suitable for both classification
and regression problems. The structure of an artificial neuron is conceptually similar to that of a biological neuron.

An artificial neuron receives input signals, each of which is weighted by a synaptic weight. The neuron’s
activity is calculated as the weighted sum of these inputs, with an added bias. The neuron’s output is determined
by an activation function applied to this activity. Synaptic weights are usually initialized randomly but are adjusted
during training to minimize the error, which is measured by a cost function. This process is crucial for optimizing
the model’s predictive accuracy. The Perceptron, the simplest form of an artificial neuron, was initially proposed
by Rosenblatt in 1958 and remains foundational in modern neural network design.
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Figure 1. Idealization of the first artificial neuron proposed by

A neural network typically consists of multiple layers of artificial neurons, including an input layer, one or
more hidden layers, and an output layer. The input layer receives the features representing the problem, while the
output layer produces the network’s predictions. Hidden layers, which vary in number and neuron density, process
the information between these layers. In densely connected layers, every neuron in one layer is connected to all
neurons in the next.

The Backpropagation algorithm, introduced by Rumelhart and colleagues in 1986, is a key training method
for Multilayer Perceptrons (MLPs), a common type of ANN. While not the only training algorithm, Backpropaga-
tion is foundational and has influenced many subsequent algorithms used in training ANNs [9–12].
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4 Methodology

As discussed in Sections 1 and 2, phase field models have a high capacity to represent quasi-brittle media,
incurring substantial computational costs. To overcome this limitation, the authors are developing a methodology
to create a constitutive model based on phase field theory, assisted by ML models. This methodology involves
numerical simulations to generate a database correlating deformation states with corresponding phase fields (ma-
terial damage). With this database, the goal is to train an ML model capable of predicting the phase field from
a given state of deformation. The primary objective is to incorporate this model into a constitutive model based
on phase field theory, aiming for a significant reduction in computational cost. As demonstrated in Section 2, the
determination of the phase field requires a computationally expensive iterative process. To make this proposal
feasible, the numerical models used for generating the training dataset must be realistic and duly validated in the
literature.

This study presents the results of the first ML model trained to predict the phase field associated with a defor-
mation state. For this purpose, training data from a numerical simulation that replicated the tensile test of a plate
with asymmetric notches, as presented by Molnar and Gravouil (2017), were used. The experiment was simulated
within the INSANE system, employing the Miehe constitutive model. The model setup, encompassing geome-
try, loading, and boundary conditions, is depicted in Figure. The material properties utilized in the simulation
are as follows: Young’s modulus E = 21876.0 kN/mm2, Poisson’s ratio ν = 0.18, critical energy release rate
Gc = 1.8× 10−2 kN/mm, and length scale parameter l0 = 2.234mm.

(a) (b) (c)

Figure 2. (a) asymmetric double notched tensile test; (b) mesh asymmetric double notched tensile test; (c) Phase
field result the last step.

A multi-layer perceptron (MLP) model with three hidden layers, comprising 50, 150, and 50 neurons, respec-
tively, was developed. The ReLU activation function was employed in the hidden layers, and the identity function
was used in the output layer. The model was trained over 50 epochs using the Adam optimization algorithm with a
learning rate of 0.05. Implementation was carried out using the Scikit-learn library. The adopted features include
the strain state (the three components), the fracture driving force, and the historical driving force.

To validate the ML model, we attempted to simulate the damage observed in the tests studied by [13]. The
geometry, boundary conditions, and experimental setup are depicted in Fig.3a and 3b. The specimen is a notched
plate subjected to loading via a top pin and a fixed lower pin, featuring a hole offset from the center to induce
mixed-mode fracture.
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(a) (b) (c)

Figure 3. (a) Test dimensions notched plate with hole; (b) Test notched plate with hole; (c) Mesh Plate notched
with hole.

For a comparison between the expected values from a numerical simulation by Finite Element Method (FEM),
simulations were performed using fixed displacement increments of ∆u = 1 × 10−4 mm throughout. The mesh
consists of 4550 triangular elements with refinement in areas where cracking is anticipated. It is important to note
that the same material properties used in the numerical simulation were employed to generate the training dataset.

5 Results

The computational results of validation test are presented in Figure 4.

(a) (b) (c)

Figure 4. (a) Experimental observation of fractured specimen; (b) Predicted crack path by MEF method; (c) The
crack path by the ML method.

A photo of one of the fractured specimens is shown in Fig. 4a. A curved crack develops from the notch to
the large hole, followed by a secondary straight crack extending from the hole to the sample edge.

The results displayed in Figure 4c. indicate that the ML model demonstrated good agreement with the values
obtained both in numerical simulation and as indicated in the experimental results. Although some predictions of
the ML model exhibited deviations compared to the values obtained via the Finite Element Method (FEM), these
deviations are minor and expected, given that the model was trained with a limited database, encompassing a small
diversity of deformation states. These preliminary results demonstrate the potential of the method, as even with
reduced training data, the results adhere to expectations. It is noteworthy that these results are derived from the
initial studies of the research group, and as the investigation progresses, more robust results are anticipated, which
will be presented in future publications.

The experiment highlights that using ML models to predict phase field values from deformations is a highly
promising approach. An adequately trained ML model can significantly reduce the computational cost of simula-
tions utilizing constitutive models based on Phase Fields, as the ML model can eliminate the need to solve a system
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of equations in the problem-solving process.

6 Conclusion

The results obtained demonstrate that the ML model holds significant potential for predicting phase field
values from deformations, despite some deviations observed relative to traditional methods such as FEM. These
deviations, being of small magnitude and expected due to training with a limited database, do not compromise
the validity of the method; rather, they underscore the need to expand the training data to enhance the model’s
accuracy. In conclusion, the use of ML models emerges as a promising alternative for reducing computational
costs in complex simulations, such as those based on Phase Fields. As research progresses and models are refined
with a more robust database, it is anticipated that these models will complement traditional methods, resulting in
more efficient and accurate simulation processes.
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