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Abstract. The physics-informed neural network (PINN) is a machine learning technique where the physics of the
problem are embedded into the loss function. The straightforward approach is to define the loss function using
the problem governing differential equations and its boundary/initial conditions in a sort of collocation method.
In general, the hyper-parameters of neural networks for each problem in hands are defined via a grid search-like
procedure, or simply by trial and error. In this paper, the application of PINNs is illustrated for one-dimensional
beam problems, and the influence of the weights initialisation on the training is investigated. The code was built
using SciANN, a Python package that uses TensorFlow and Keras for scientific computing and physics-informed
deep learning employing artificial neural networks.
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1 Introduction

Physics-informed neural networks (PINNs) are artificial neural networks that can be trained with data while
respecting physical constraints. This is achieved by formulating the loss function to include the governing equa-
tions of the problem and its initial and/or boundary conditions. While the term physics-informed neural networks
was introduced by Raissi et al. [1], the concept behind the method dates back three decades, as seen in the work of
Lagaris et al. [2]. The method builds on insights from Hornik et al. [3] (see also Cybenko [4]), who demonstrated
that neural networks are universal approximators. The contemporary approach by Raissi et al. [1] generalizes
previous methods using modern computational tools. This foundational work has led to numerous extensions and
improvements in the PINN method over the years. Notably, several papers have applied PINNs to Euler-Bernoulli
and Timoshenko beam problems, including [5–8].

In this paper, we investigate the impact of weight initialisation in PINNs1 on the analysis of four common
boundary conditions of a Timoshenko beam under a uniformly distributed load. Analytical solutions were used for
error computation, and results from the linear finite element method (FEM) are presented for comparison.

2 Physics-informed neural networks

The structure of an artificial neural network and its training process are shown in Fig. 1. Its basic components
are represented by the input layer, which is responsible for the entry data, the hidden layers, where most operations
are performed during the learning task and the output layer, which provides the model predictions. Each layer
comprises several neurons that communicate with each other. The weights W and biases b are the trainable
parameters of a neural network, which means that these quantities change during the training. In this process, the
information is transmitted between two neighbouring layers according to eq. (1) as follows:

zℓ = σℓ
(
W ℓzℓ−1 + bℓ

)
, ℓ = 1, 2, 3, . . . , L

Θ = {W , b} all trainable parameters,
(1)

1Using the strong form of the problem, that is to say, the classic PINN method.
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where W ℓ are the weights of each one of the connections between two layers, bℓ are the biases, which are values
added to the weighted input from the previous layer, zℓ is the output of the layer ℓ and input of the layer ℓ + 1,
hence z0 ≡ X , the input of the neural network, and zL ≡ y, the output of the neural network, as illustrated in
Fig. 1. In equation eq. (1), the output of the neurons from layer (ℓ − 1) are used as input data for the neurons
in layer ℓ. The function σℓ is the activation function that usually inserts non-linearities into the neural network
connections, allowing to capture more complex relationships between the inputs and outputs. In order to model a
problem with a neural network, it is necessary to first set the neural network, and then to train it. The loss function
L illustrated in Fig. 1 evaluates how well the model predictions perform on the dataset (inputs).
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Figure 1. Fully connected neural network

In supervised learning, the input-output pairs form the labelled dataset used to train the neural network.
This process involves minimizing the loss function to obtain “optimal” values for the weights and biases. This
is typically accomplished using a gradient descent algorithm or similar methods, where the error in the neural
network’s predictions is evaluated during each iteration. In a physics-informed neural network the loss function is
enriched to include the physics of the problem.

Suppose our task is to find a solution v(x) for a generic non-linear partial differential equation (PDE). Since
neural networks are recognised as universal approximators [3, 9], the output y (see Fig. 1) can be a candidate
solution v(x) for the PDE, that is to say, v(x) ≈ N v is a reasonable assumption to make, where N v represents a
neural network prediction. The basic idea of PINNs is to approximate the field variables with neural networks, and
as already pointed out, construct the loss function to respect the physics of the problem represented by the PDE
itself and by its initial and/or boundary conditions. This leads to an enriched loss function of the type:

L = λdataLdata + λPDELPDE + λBCsLBCs + λICsLICs, (2)

where Ldata is the term associated to the labelled dataset as in a regular ANN, that is to say the same loss shown
in Fig. 1. In addition to that, LPDE is the residual of the partial differential equations, while LICs and LBCs are,
respectively, the terms associated to the initial and boundary conditions. Each λ is a hyper-parameter that needs to
be tuned for training. A common metric used for each term in eq. (2) is the Mean Square Error (MSE), as shown
in eq. (3) where each term of the loss function is illustrated.
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NBC
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1
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i
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∣∣2 ,
LPDE =

1
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NPDE∑
i=1

|generic PDE − 0|2 ,

(3)

where the number of collocation points N is specific for each loss term in eq. (3). In this paper, since all the exam-
ined problems are static, with no initial conditions, and data was not used in the training process, the loss function
employs only the governing partial differential equations and their boundary conditions. The target problem of this
paper is the Timoshenko beam, a problem governed by the following couple differential equations:

∂

∂x

(
EI

∂θ

∂x

)
+ ksGA

(
∂v

∂x
− θ

)
= 0, (4)

∂

∂x

[
ksGA

(
∂v

∂x
− θ

)]
= −q(x), (5)

where q(x) is the distributed load acting over the beam span, A the area of the cross-section, I the second moment
of area of the cross-section, E the Young’s modulus, G the shear modulus, and ks the shear correction factor.
Deflections and cross-section rotations are represented by the variables v(x) and θ(x), respectively. Unlike the
Euler-Bernoulli beam, the Timoshenko beam model accounts for shear deformation effects in addition to bending
deformation.

3 Modelling aspects

In this section, the settings used to performed the training of the PINN models are introduced. A neural
network with 3 hidden layers with 20 neurons each was adopted to approximate each field variable. While it is
possible to use only one neural network for the model to represent all field variables, in this paper, the deflection
and cross-section rotations are approximated by separated neural networks as shown in eq. (6):

v(x) ≈ N u(x,Θ), θ(x) ≈ N θ(x,Θ) (6)

Due to its success on many problems, the optimization algorithm Adam (Adaptive Moment Estimation) was em-
ployed [10] with a batch size of 32. An initial learning rate of 10−3 was settled, and it is automatic reduced during
training by default, when the learning stagnates. The standard number of epochs was 400. Among many options
of activation functions, such as, Sigmoid, ReLU, Gaussian, Softplus, in this work, the hyperbolic tangent tanh(x)
was the choice, since this is a common choice for PINNs simulations in engineering problems, and it possesses
continuous derivatives. Finally, the mean square error was chosen as the loss function metric, and 2000 was the
standard number of training points. To generate the input data, half of the 2000 points were randomly distributed
along the beam domain to be the inputs of the differential equations. The other half was divided equally among
the boundary conditions, 500 points for x = 0, and 500 points for x = L. The target data associated with all
these points are simply zeros. It is worth noticing that this was a particular choice of points distribution, and it can
influence the performance of the model training. At last, different from the training set, the test set was generated
with equally distributed points.

In order to facilitate the construction and understanding of the algorithm to solve the beam models, the open
source Python package SciANN [11] was used to ease the code structuring. This library is build with Tensorflow
[12] and Keras [13], hence it inherits their functionalities. SciANN covers several engineering applications, such as
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model fitting, solution of ordinary and partial differential equations, and model inversion (parameter identification)
[11].

The initialisation of the weights and biases was performed using several initialisers to analyse its influence, if
any, on the error results of deflections and rotations. The weights of the initialisers Xavier, LeCun, random, and
He are obtained by a normal distribution, using the Gaussian distribution or a uniform distribution, where every
value inside the range has an equal probability of occurring. The truncated normal initialiser draws samples from
a normal distribution but truncates values with more than two standard deviations from the mean, re-sampling
them instead. The variance scaling initialiser is designed to adapt to the shape of its input tensors. Finally, the
orthogonal initialiser is generated using an orthogonal matrix. All initialisers are bounded by a range of values
[-limit, limit] typically defined based on the number of inputs (Fin) and outputs (Fout) of the layer. While it
is possible to set different means and standard deviations for the initialisation, in this study, the weights were
initialised using TensorFlow with its default settings. In Fig. 2, the probability density of the weights for a layer
with 20 inputs and 20 outputs is illustrated, while for clarity, the probability density of the weights is shown for a
layer with 1000 inputs and 1000 outputs in Fig. 3.
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Figure 2. Weights considering a layer with 20 inputs and 20 outputs

4 Numerical simulations

This section illustrates numerical results obtained with the PINN approach applied to the Timoshenko beam.
All simulations were performed considering a linear elastic material, with a Young’s modulus E = 100 N/m2

and Poisson’s ratio ν = 0.3. A rectangular cross-section with b = 0.2 m and h = 0.5 m was adopted, with a
form factor ks = 5/6 and a beam length L = 2 m. A number of 2000 collocation points were used for training,
while the predictions were performed with 200 uniformly distributed points along the beam span. The above
parameters are assumed for all beams, except when specified otherwise. A prismatic beam under an uniformly
distributed load q(x) = −1 N/m over its span is investigated considering four boundary conditions, as shown in
Fig. 4: (i) simply-supported (pinned-pinned), (ii) cantilever (fixed-free), (iii) doubly-fixed (fixed-fixed), and (iv)
fixed-pinned.
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Figure 3. Weights considering a layer with 1000 inputs and 1000 outputs
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Figure 4. Classic beam boundary conditions

The quality of the predictions obtained from the trained model is evaluated using an error measure based on
reference values, which in our case are the analytical solutions. The error measure used is shown in eq. (7) below:

e =


Nn∑
i=1

(vrefi − vnumi )2 +

Nn∑
i=1

(θrefi − θnumi )2

Nn∑
i=1

(vrefi )2 +

Nn∑
i=1

(θrefi )2



1

2

(7)

where vrefi and θrefi are the reference solutions in terms of deflection and rotation at a particular collocation point
i, respectively, while vnumi and θnumi are the corresponding numerical solutions, and Nn is the total number of
collocation points. Linear FEM model results are also compared with PINN. In this case, the collocation points
are replaced by the nodes of the discretisation for the error evaluation.

A PINN model was trained using the eleven weight initialisers described in section 3, and the errors were
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evaluated. To mitigate the variability in results due to PINN training, error values were averaged over 10 simula-
tions for each boundary condition using each weight initialiser. The corresponding error values, computed using
eq. (7), are shown in Fig. 5. In these plots, the vertical axis represents the error in log scale, the bottom hori-
zontal axis corresponds to the epochs of the PINN simulations, and the top horizontal axis represents the node
discretisation of the linear FEM.
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(a) Simply-supported beam
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(b) Doubly-fixed beam
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(c) Fixed-pinned beam
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(d) Cantilever beam

Figure 5. Error values considering a uniformly distributed load over the beams span: PINNs x FEM

As it can be observed from Fig. 5, except for the cantilever beam, the results of PINNs simulations after train-
ing are in good agreement with the analytical solutions, with an error of the order of 10−3, and overall accordance
with the FEM simulations. As shown in Fig. 5d, the PINNs take longer to learn the cantilever beam behaviour,
even after increasing the number of epochs to 3000, the outcome was not as good as the other cases. This difficulty
might be associated to the fact that the right hand side boundary conditions are dependent of the derivatives of
the approximated field variables (shear and bending moment), instead of the deflections and rotations directly. In
addition to that, the error results of FEM simulations for the cantilever beam is smaller than the other boundary
conditions, which contributes to increase the discrepancy when compared to the PINN results.

Regarding the initialisers, Fig. 5 reveals three distinct regions of interest. The first region includes the random
(normal and uniform) and truncated normal initialisers, where learning was not successful in the mean sense. This
failure might be associated with vanishing gradients or local minima issues. The second region is represented by
the He initialiser, which, although convergent, yielded slightly worse results compared to the other initialisers.
Finally, all the other initialisers produced similar outcomes, with no clear evidence to favour any particular one
over the others. Although there are existing studies on weight initialisation [14, 15], which are generally developed
with a particular activation function in mind, there is no consensus on how to initialise weights for PINN models
in general.
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5 Conclusions

In this paper, we conducted a preliminary investigation into the effect of weight initialisation on the training
results of a Timoshenko beam using the tanh activation function. The numerical simulations indicated that many
initialisers are suitable for training the PINN model. Of the 11 initialisers analysed, the random (normal and
uniform) and truncated normal initialisers should be avoided. Although the He (normal and uniform) initialiser
produced reasonable results, other initialisers were found to be preferable. Future work will involve more robust
simulations to provide further insights into the role of weight initialisers for PINN models in the context of the
Timoshenko beam with the defined settings.
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