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Abstract. Structural reliability analyses may become very computationally demanding, especially when 

numerical simulations are employed to represent the structural behavior, and/or these analyses are used within 

structural optimization procedures. To overcome this problem, surrogate models have been widely used in the 

last decades, helping to avoid evaluations of the demanding parts of the computational code and to reduce the 

overall computational demand. However, the efficiency of the surrogates is usually compromised when dealing 

with high dimensional problems. In fact, high dimensionality imposes some difficulties not only to surrogate 

models but also for some structural reliability methods available in the literature. For these reasons, the present 

paper proposes to investigate the application of Deep Neural Networks to reduce the dimensionality of structural 

reliability problems. A proper dimensionality reduction may help visualizing and understanding the problem and 

may assist surrogate models and reliability methods which would otherwise lose accuracy, precision and/or 

efficiency when applied to high dimensional problems. The results indicate that: the DNN is indeed capable of 

performing the dimensionality reduction; the safe and failure classes of samples are clearly distinguishable in all 

latent spaces considered; even a one-dimensional latent space is enough for the reliability analyses performed 

herein.  
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1  Introduction 

Surrogate models, such as kriging and deep neural networks (DNNs), have been widely used in the last 

decades, in order to alleviate the computational burden associated with many practical applications of, for 

example, structural optimization and reliability analysis (Forrester, Sóbester and Keane [1], Lima, Evangelista Jr 

and Guedes Soares [2], Wang et al. [3]). This is achieved by employing the surrogate in replacement of the 

demanding parts of the computational code, commonly those related to the required structural analyses.  

In structural reliability analysis, usually the limit state functions are the ones to be replaced by the 

surrogates, since their evaluations are responsible for a significant amount of the required computational effort. 

An experimental design (ED), comprising some specific points over the problem domain and the corresponding 

limit state function responses, is used to construct the surrogate and after that the surrogate is evaluated instead 

of the true limit state function. To improve accuracy and efficiency, adaptive procedures have been proposed in 

the literature, such as the so-called AK-MCS, by Echard, Gayton and Lemaire [4], which combines adaptive 

kriging with Monte Carlo simulation. In the adaptive procedures, the ED is enriched during the analysis, by 

iteratively selecting points to be included in it, and the surrogate is updated or reconstructed accordingly. 

However, a common issue in what concerns surrogate models is the so-called “curse of dimensionality” 

(Sutton and Barto [5]). As the dimensionality of the problem increases, many surrogates loose efficiency and/or 
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accuracy. A way of dealing with this is by combining the surrogate with dimensionality reductions techniques, 

such as principal component analysis (Lataniotis, Marelli and Sudret [6]). On the other hand, recent studies on 

the deep learning area (Poggio and Liao [7]; Hutzenthaler et al. [8]) have been indicating that DNNs are capable 

of avoiding the curse of dimensionality, at least for some kind of problems. In fact, by using adequate numbers 

of layers and neurons and proper training procedures, the neural network may be able to perform the 

dimensionality reduction by itself. 

Bao et al. [9], for example, address high-dimensional reliability analyses by using a deep adversarial 

autoencoder-based sufficient dimension reduction and an active learning method. The number of dimensions of 

the reduced space, usually called latent space in the machine learning area, is taken as always equal to two. Good 

results are obtained when the proposed method is applied to some high dimensional problems and compared to 

other methods from the literature. Li and Wang [10], on the other hand, also deals with deep learning and high 

dimensional reliability analyses, but, the DNN is used only for the dimensionality reduction. In a two-

dimensional latent space, Gaussian process regression is employed to replace the limit state function and a 

sampling approach is proposed to update both the neural network and the Gaussian process models.  

Dimensionality reduction may also be employed to better understand the problem being solved and the 

methods used to solve it, as done, for example, in Li and Wang [10] considering the 2D latent space. Taking 

another example from the literature, Hurtado [11] proposed a transformation of structural reliability problems 

using polar features and showed that after the transformation, the safe and failure classes of samples were clearly 

distinguishable, and that it was possible to identify worst-case scenarios, directly related to the samples in the 

safe domain that are on the verge of the failure domain. 

The present paper focuses on the application of DNNs as surrogate models while reducing, at the same 

time, the dimensionality of the problem. The paper illustrates the capabilities of the DNNs to perform such 

dimensionality reduction, using a more simple adaptive approach than those usually found in the literature, and 

also investigates the impact of the number of dimensions of the latent space on the results.  

This paper is organized as follows. Section 2 briefly describes the structural reliability problem and its 

solution via Monte Carlo simulation. Section 3 presents the DNNs and procedures employed herein. In Section 

4, examples and results are shown and discussed. Finally, some conclusions and closing remarks are given in 

Section 5. 

2  Structural Reliability 

Considering a vector of nRV random variables (RVs), X, which represents the uncertainties related to a 

given structural system, and a vector of realizations of such random variables, x. Failure and safety domains, Ωf 

and Ωs respectively, may be defined by employing limit state functions, g(x), in such a way that: 
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Each limit state is related to a possible failure mode of the structure, for which a failure probability may be 

defined as:  
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being fX(x) the joint probability density function of vector X. 

This multidimensional integral may be solved by structural reliability methods such as FORM, SORM and 

Monte Carlo simulation (Melchers and Beck [12]), for example. Simple Monte Carlo simulation method (MCS) 

estimates the failure probability by randomly generating nMC samples of X according to its joint distribution, 

fX(x), and by employing an indicator function, I[x], which is equal to zero if x belongs to the safety domain and 

one otherwise. The failure probability is estimated by:  
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In the context of structural engineering, the number of simulations required to obtain accurate enough 
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estimates of the failure probability is usually high, and the computational burden easily becomes prohibitive.  

3  Deep Neural Networks 

In structural reliability analyses, artificial neural networks may be used as surrogates of the limit state 

functions in an attempt to reduce the overall computational effort. To do so, an experimental design is defined, 

comprising nED points, 

 
(1) (2) ( ){ , ,..., }EDn
ED ED EDx x x , with 

( ) RVi n
EDx ,  (4) 

and the corresponding limit state function values,  

 
( ) ( )( )i i
ED EDy g x  . (5) 

The surrogate model is constructed using the ED, and tries to map the relationship between x and y = g(x).  

Artificial neural networks were introduced by McCulloch and Pitts [13] based on a simplified analogy to 

the nervous system and have significantly evolved ever since, especially in the area of deep learning 

(Goodfellow, Bengio and Courville [14]). For the type of DNN used in this paper, see Fig. 1, the relationship is 

captured by using artificial neurons organized in layers, with weighted connections between neurons of different 

layers, and previously specified activation functions responsible for the processing within each neuron.  

 

Figure 1. Deep Neural Network. 

The activation function f adopted herein is the rectified linear unit (ReLU), defined by 
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The mapping is achieved by determining the weights of the connections as well as the other parameters of 

the neural network, in an iterative process called training. During this process, the inputs are provided to the 

DNN and their respective outputs are computed propagating the information from the input towards the output 

layer. The differences between the outputs provided by the DNN and the respective true values are computed 

and a backpropagation of the error is performed, from the output towards the input layer, updating the 

parameters of the network. One backpropagation of all the errors, related to entire training data, is called an 

epoch, which may be divided in batches if the dataset is too large. To do the backpropagation, first a so-called 

loss function, which is a measure of the error, must be defined. 

Here, the DNN is seen as an approximation of the limit state function, so that 

 
( ) ( )(̂ )i i
NET EDy g x   (7) 

and the loss function adopted is the mean squared error, given by:  

 2
ED NETL y y   (8) 

It is also necessary to define a training algorithm to be used during the training process. The limited-

memory BFGS is a quasi-Newton method that approximates the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

algorithm (Liu and Nocedal [15]). This algorithm may be used for small networks and data sets that can be 

processed in a single batch, and is adopted herein. 
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Considering the previous definitions, the proposed adaptive algorithm consists of the following steps: 

1. Randomly generate a Monte Carlo population comprising nMC samples from the joint probability 

distribution given by fX(x); 

2. Get a sampling pool of nPOOL samples from the Monte Carlo population using the farthest apart subset 

concept. After rescaling the random variables to be in the range [−1,1], using the minimum and maximum 

respective values obtained from the MCS population, the sample closest to the mean of the RVs is selected 

and included in the sampling pool. The next selected sample is the defined as the farthest apart sample from 

all the previously selected ones. The procedure continues, by the criterion of the maximum Euclidean 

distance between the points, until nPOOL samples are selected;  

3. Get the first nED samples from the sampling pool and evaluate the true limit state function on these 

points. Define the initial ED; 

4. Construct or update the surrogate model using the ED: 

4.1 If the ED is not enriched yet, the algorithm is said to be on the initialization phase. Perform nRUNS 

initializations and trainings of the DNN, using different seeds for the pseudo-random number generator, 

and choose the DNN with smaller loss function value; 

4.2. If the ED is not the initial one, the algorithm is said to be on the updating phase. The previously 

trained DNN is updated considering the enriched ED; 

5. Estimate the limit state values for the sampling pool, using the DNN. Select nADD points, taking those 

with the smallest estimated absolute limit state values among the ones not yet included in the ED. Evaluate 

the true limit state function on them, include these points in the ED to enrich it; 

6. If the number of points in the ED is equal to the maximum number of points defined by the user, 

compute the failure probability using the surrogate model over the entire MC population, and applying eq. 

(3). Otherwise go back to step 4. 

This adaptive procedure is very simple and relatively easy to implement. It ensures that the points 

comprising the ED are not too close to each other by employing the farthest apart concept. It further reduces the 

computational effort by evaluating the surrogate model over the sampling pool instead of over the entire MC 

population, during the adaptive phase. It tries to include points in the most important regions for reliability 

analysis, which are those close to the limit state equation (g(x) = 0). However, this procedure is expected to be 

less efficient than those which take into account direct measures of the surrogate model error. Nevertheless, the 

objective here is to investigate the capabilities of the surrogate model regarding the dimensionality reduction. A 

simple adaptive procedure seems to be sufficient for this purpose. 

4  Numerical Examples 

To solve the examples, as depicted in Fig. 1, the DNNs employed have one feature input layer (number of 

features equal to nRV), fully connected to one hidden ReLU layer with nHID neurons (responsible for the 

dimensionality reduction), fully connected to the latent space (with nLAT neurons, corresponding to the 

dimensions of the latent space), fully connected to one hidden ReLU layer with nHID neurons (responsible for 

representing the limit state function over the latent space) and fully connected to the output layer (with output 

size equal to one). The number of hidden neurons in each hidden layer is taken as nHID=16 and, for investigation 

purposes, three different values, 1, 2 and 3, are taken for nLAT. The number of samples in the sampling pool is 

fixed at nPOOL=1000 and the size of the Monte Carlo population changes from example to example. The ED 

starts with 50 points and is increased, with nADD=10, until it reaches 200 points.  

The computational codes were implemented in MATLAB, using the deep learning toolbox and the 

corresponding default options, except when otherwise specified. The training algorithm is changed to L-BFGS, 

with a maximum number of line search iterations equal to 200 and the step and gradient tolerances changed to 

10−10. In the initialization phase, nRUNS=5 is adopted with a maximum of iterations of the L-BFGS algorithm 

equal to 2000. In the updating phase, the maximum number of iterations is changed to 1000. 

The computations were performed using an Intel® CoreTM I7-9700KF CPU @3.60 GHz processor, with 

16GB of RAM, and a NVidia GPU GeForce RTX 4070 Ti Super. 
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4.1 Example 1: Series System with Four Branches 

The first example was proposed in Waarts [16], widely studied in the literature, and consists of a series 

system with four branches, with two standard normal distributed random variables and the following limit state 

function:  
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The final results for this example are presented in Tab. 1, with the reference failure probability being 

estimated via MCS with nMCS=3⸳105. Figures 2a), b) and c) illustrate the Monte Carlo population divided into 

failure samples (red squares), and safe samples (blue circles), as well as the initial ED (green diamonds), and the 

added points (black diamonds). Figures 2d) e) and f) present the results in the latent space. 

Table 1. Results for the first example: Series System with Four Branches. 

 MCS 
DNN-MCS 

 nLAT=1 nLAT=2 nLAT=3 

Loss Function - 2.55E-03 2.49E-04 1.83E-04 

Pf 4.43E-03 4.52E-03 4.40E-03 4.45E-03 

Pf difference (%) - 2.03 -0.68 0.38 

 

Figure 2. a), b), c) Monte Carlo samples, initial ED and added points in the original space; d) e) f) Monte Carlo 

samples in the latent spaces. 

4.2 Example 2: Dynamic Response of a Nonlinear Oscillator 

This example was studied, for example, in Echard, Gayton and Lemaire [4]. It consists of a nonlinear 

undamped single degree-of-freedom system for which the limit state function is  

 1 0 1
1 2 1 1 2
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Dimensionality Reduction and Visualization for Structural Reliability Analysis using Deep Neural Networks 

CILAMCE-2024 

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 

 

and 0 1 2 /c c mw . The parameters for all six normally distributed random variables are given in Tab. 2.  

Table 2. Random variables for the second example: Dynamic Response of a Nonlinear Oscillator.  

Variable Mean Standard Deviation Variable Mean Standard Deviation 

m 1.0 0.05 r 0.5 0.05 

c1 1.0 0.10 F1 1.0 0.20 

c2 0.1 0.01 t1 1.0 0.20 

 

The final results for this example are presented in Tab. 3, with the reference Pf estimated using nMCS=7⸳104. 

Figures 3a), b) and c) present the points in the original space, in the plane defined by the two variables with 

largest absolute values of linear correlations with the limit state function, computed using the initial ED. Figures 

3d), e) and f) present the results in the latent space. 

Table 3. Results for the second example: Dynamic Response of a Nonlinear Oscillator.  

 MCS 
DNN-MCS 

 nLAT=1 nLAT=2 nLAT=3 

Loss Function - 2.55E-03 2.49E-04 1.83E-04 

Pf 2.79E-02 2.81E-02 2.81E-02 2.84E-02 

Pf difference (%) - 0.82 0.77 1.79 

 

Figure 3. a), b), c) Monte Carlo samples, initial ED and added points in the original space; d) e) f) Monte Carlo 

samples in the latent spaces. 

4.3 Discussions 

In all cases the failure probabilities obtained via the adaptive procedure using 200 evaluations of the true 

limit state functions converged to the reference ones, with differences smaller than about 2%. This indicates that 

the procedure is indeed inserting points in the vicinity of the limit state equation, as required in structural 

reliability analyses, and increasing the accuracy of the surrogate model in the most important regions for this 

kind of analysis. 

In what concerns the number of dimensions of the latent space, it is seen that good results were obtained in 

all cases investigated herein. The best result in the first example was found with nLAT=3, and in the second 

example with nLAT=2. Even a one-dimensional latent space is enough for these two examples. 

It is also seen that the safe and failure classes of samples are clearly distinguishable in all latent spaces, 
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which indicates that the DNN is capable of performing the dimensionality reduction in such a way that it 

becomes easier to construct the surrogate model for reliability analyses purposes in the reduced space. This is 

especially true for nLAT=1, case in which it may not even be necessary to construct a surrogate model, but only to 

define limits for Z1,  

5  Conclusions 

The examples showed herein indicated that DNNs are capable of performing the dimension reduction, in 

such a way that failure and safe classes of samples are clearly distinguishable in the latent space, regardless of 

the number of dimensions adopted for this space. A one-dimensional latent space is recommended, if it is still 

enough for more complex problems, because it is easier to deal with and to interpret. A loss function with more 

focus on the vicinity of the limit state equation could be developed to have a better indication about the quality 

of the estimated Pf, and to decide if it is necessary to increase the dimensionality of the latent space or not. 

On the other hand, the adaptive procedure proposed herein was simple, but enough for the purposes of this 

paper. It could be replaced by a more efficient one in future studies. 
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