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Abstract. Several numerical schemes have been proposed in the last decades to address the problem of reliability
analysis (i.e. evaluation of the probability of failure). Here we consider Adaptive Importance Sampling (AIS)
schemes, that are based on Importance Sampling (IS). The idea of AIS is to iteratively improve the sampling
distribution employed in IS. Since AIS methods are iterative, the scheme leads to a sequence of IS estimates. In
standard AIS schemes the final estimate is taken as the average among all iterations. However, in this work we
demonstrate that this approach is not the optimal choice. This occurs because some iterations will be more accurate
than others, and thus a weighted mean is able to give better results. In this context, we demonstrate that optimal
weights should be inversely proportional to the variance of the IS estimates of each iteration.
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1 Introduction

Several methods for evaluation of the probability of failure have been proposed over the years [1]. Among
these, sampling-based schemes, such as Monte Carlo Simulation and Importance Sampling (IS), are some of the
most popular ones. In a previous work we investigated the use of Adaptive Importance Sampling (AIS) in reliability
analysis [2]. AIS is a family of sampling-based algorithms based on the original Population Monte Carlo (PMC)
method by [3]. A detailed review on AIS is presented by [4]. See also [2] for a brief overview on how to employ
AIS in the context of reliability analysis.

AIS schemes are iterative methods that provide a sequence of IS estimates. In standard AIS, the final estimate
is taken as the average among the estimates of each iteration. However, in this work we demonstrate that this is
not the optimal choice, since the estimates of each iteration do not have the same accuracy. We thus demonstrate
that an optimal result can be obtained using a weighted mean among the iterations. The optimal weights depend
basically on the variance and on the sample size of the estimate of each iteration.

Before presenting the main results of this work in Section 6 we present a brief review on the subject. A
numerical example is studied in Section 7. The main conclusions of this work are summarized in Section 8.

2 Reliability Analysis

Consider a limit state function g(X) : Rm → R, where X is a vector of random variables with density fX
and support Ω ⊆ Rm, such that g < 0 indicates failure of the system under analysis. In Reliability Analysis we
are generally interested in evaluation of the probability of failure [1]

Pf = P [g(X) < 0] = E [I(g(X))] =

∫
Ω

I(g(x))fX(x)dx, (1)

where P [·] indicates the probability of occurrence of a given event, E[·] represents the expected value and
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I(t) =

 1, t < 0

0, t ≥ 0
, (2)

is the Indicator Function.

3 Monte Carlo Simulation

Suppose we wish to evaluate

J = E [h(X)] =

∫
Ω

h(x)fX(x)dx, (3)

i.e., the expected value of some function h(X). In the case of Monte Carlo Simulation (MCS), the above expected
value is estimated as [5]

Ĵ =
1

N

N∑
i=1

h(xi), (4)

where {x1, x2, ..., xN} is a sample of size N for the distribution fX . It can be demonstrate (see [2] or some other
reference on MCS) that the mean squared error of MCS results

e =
1

N
V [h(X)] , (5)

i.e., the error of the MCS estimate can be reduced by increasing the sample size, but also depends on the variance
of h(X).

In the context of Reliability Analysis it can be demonstrated that (see [2] or some other reference on reliability
analysis) the relative error of the estimate results

c =
1√
N

√
Pf − P 2

f

Pf
(6)

We observe that this relative error increases when Pf → 0. For this reason, MCS is generally inefficient (i.e.
requires very large samples) for Reliability Analysis when the probability of failure is small.

4 Importance Sampling

In Importance Sampling (IS) we rewrite the problem from Eq. (3) as (see [2] or some other reference on
importance sampling)

J = Eq [h(X)w(X)] =

∫
Ω

h(x)w(x)q(x)dx, (7)

where q(x) > 0, x ∈ Ω is a sampling distribution, Eq represents the expected value with respect to the sampling
distribution q and

w(x) =
fX(x)

q(x)
. (8)

From Eq. (7) we observe that the expected value is now evaluated with respect to the sampling distribution q
instead of the distribution fX . This can be used to get more accurate estimates.

Consider then the IS estimate

Ĵ =
1

N

N∑
i=1

h(xi)w(xi), (9)

where {x1, x2, ..., xN} is a sample of size N for the sampling distribution q(x). It can be demonstrated that (see
[5]) the optimal sampling distribution q(x) satisfies
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q∗(x) =
|h(x)|fX(x)∫

Ω
|h(x)|fX(x)dx

, (10)

that is known as optimal importance sampling density. In the case of Reliability Analysis we have h(x) = I(g(x))
and thus

q∗(x) =
I(g(x))fX(x)

Pf
. (11)

This demonstrates that q∗(x) should be proportional to I(g(x))fX(x). In other words, in the context of Reliability
Analysis the optimal sampling density should only sample the failure region. Since the failure region is not explic-
itly known beforehand, several approaches have been proposed to find some efficient sampling distribution. This
is the idea of AIS.

5 Adaptive Importance Sampling (AIS)

Consider we have a target sampling function q∗(x) (i.e. the optimal density) and a sequence of sampling
functions

Q = {q1(x), q2(x), ..., qn(x)}. (12)

See [2] for more details on how to use AIS to build such a sequence of sampling functions in the context of
reliability analaysis.

We then define the Adaptive Importance Sampling (AIS) estimate

Ĵ =

n∑
k=1

αkĴk , (13)

with

n∑
k=1

αk = 1, (14)

where Ĵk is an IS estimate with sampling function qk(x), i.e.

Ĵk =
1

Nk

Nk∑
i=1

h(xi)wk(xi), (15)

wk(x) =
fX(x)

qk(x)
. (16)

Note that the AIS estimate Ĵ is a weighted mean of the sequential IS estimates Ĵk with weights αk. However,
standard AIS schemes consider that all estimates Ĵk have the same weight, and thus the final estimated is a simple
average of the estimates Ĵk (see [4] for more details).

Also note that the variance of each iteration of AIS (i.e. Eq. (15)) results

V
[
Ĵk

]
= V

[
1

Nk

Nk∑
i=1

h(xi)wk(xi)

]
=

1

N2
k

Nk∑
i=1

V [h(xi)wk(xi)] =
V [h(X)wk(X)]

Nk
. (17)

6 Optimal AIS

Here we wish to evaluate the optimal weights α1, α2, ..., αn, .i.e. the weights that make Ĵ as accurate as
possible. The variance of the AIS estimate from Eq. (13) results

V[Ĵ ] = V

[
n∑

k=1

αkĴk

]
=

n∑
k=1

α2
kV[Ĵk]. (18)

Since
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V[Ĵk] =
1

Nk
V [h(X)wk(X)] . (19)

we have

V[Ĵ ] =
n∑

k=1

α2
k

Nk
V[h(X)wk(X)]. (20)

Since IS sampling schemes are unbiased, the optimal weights are the ones that minimize the variance of the
estimate Ĵ . Thus, the optimal weights are given by

α = argmin
n∑

k=1

α2
k

Nk
V[h(X)wk(X)] (21)

subject to
∑n

k=1 α
2
k = 1.

The Lagrangian function of this optimization problem results

L =

n∑
k=1

α2
k

Nk
V[h(X)wk(X)] + λ

(
n∑

k=1

αk − 1

)
, (22)

where λ is the Lagrange multiplier of the equality constraint. The first order stationary condition ∂L/∂αi = 0
then gives (after rearrangement)

αi = −λ

2

Ni

V[h(X)wi(X)]
. (23)

Since the Lagrange multiplier is unknown we can take k = −λ/2 and thus

αi = k
Ni

V[h(X)wi(X)]
. (24)

This puts in evidence that the optimal weights must be proportional to Ni/V[h(X)wi(X)]. Thus, the optimal
weights can be found by

αk =
αk∑n
i=1 αk

, (25)

with

αk =
Nk

V[h(X)wk(X)]
. (26)

This result puts in evidence that, in general, taking all weights the same (i.e. taking Ĵ as the average value
between the sequential estimates Ĵk) is not an optimal choice. Finally, from Eq. (17) we conclude that

αk =
1

V
[
Ĵk

] =
Nk

V[h(X)wk(X)]
. (27)

The above results puts in evidence that the optimal weights should be inversely proportional to the variance of
the IS estimate of each iteration. This means that optimal weights depend on the sample size Nk and the variance
of argument being estimated of each iteration. This is the main conclusion of this work.

Since the variance V[h(X)wi(X)] is unknown in practice, we can estimate it using a sample variance s2k.
This gives

αk =
Nk

s2k
. (28)

Since a sample estimate to V[h(X)wi(X)] is being proposed here, some kind of error analysis must be
considered. In this work we perform a very simple error analysis, that should be improved in future works.
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6.1 Error analysis and sample size

It is known that the sample variance s2 has standard error

σ̂s2 = s2
√
2/(n− 1), (29)

where n is the sample size employed to estimate it. Thus, the relative error of the estimate results

e =
σs2

σ2
=

σ̂s2

s2
=

√
2√

n− 1
. (30)

Consequently, we can rearrange the above equation to get

n = 1 +
2

e2
. (31)

This expression allow us to estimate the necessary sample size n in order to get relative error e. Assuming,
for example, that we require a relative error e = 0.05 we get a sample size n = 801. For this reason, in this work
we recommend taking the sample size of each iteration of AIS as to satisfy

Nk ⪆ 800, (32)

to ensure robustness of the proposed approach. This is obviously a preliminary error analysis, that should be further
investigated in future studies.

7 Numerical Example

Here we consider an example taken from [6], that has two random variables X1, X2 with Standard Normal
distribution. The limit state function is given by

g = 5− x2 − 0.5(x1 − 0.1)2. (33)

The reference value for the probability of failure is Pf = 3.01 × 10−3 [6]. In this work we employed only the
DM-PMC (Deterministic Mixture PMC) algorithm described in [2]. The parameters of the algorithm were taken
as: n = 5, Nk = 800, k(1) = 2, k(t) = 1/2, t ≥ 1. These are basically the same parameters employed in [2], but
the sample size of each iteration has been increased from Nk = 400 to Nk = 800 (the total sample size has bee
increased from 2,000 to 4,000), in order to roughly comply with the condition from Eq. (32). The accuracy of the
results was measured running each algorithm 10 times and estimating the average probability of failure P f , the
bias b, the coefficient of variation c and the root mean square error erms. See [2] for a detailed description on how
to evaluate these quantities.

The results obtained with standard DM-PMC and with optimal weights are presented in Table 1. From
these results we observe that standard DM-PMC simply does not work for this example, since the estimates are
completely wrong. The DM-PMC with optimal weights, on the other hand, is able to give accurate results. Thus,
these results demonstrate that the proposed weights are able to improve the accuracy.

Table 1. Results for Example 2 (Total sample size equal to 4,000)

Method P f b c erms erms/Pf

Standard DM-PMC 1.0150e+06 1.0150e+06 3.1623 3.2097e+06 1.0663e+09

DM-PMC with optimal weights 0.0030 -1.5669e-05 0.1437 4.0855e-04 0.1357

From the results from Table 1 we also observe that the standard DM-PMC provided very bad results, indicat-
ing that the algorithm became unstable in some way. In order to investigate what really happened, we present the
results of each iteration of each run in Tables 2 and 3.

From Table 2 we observe that some IS estimates gave very bad results, namely at runs 7 and 10 (the values
are indicated in red and magenta). The estimate of the third iteration of run 10 is fact very bad, indicating that the
DM-PMC algorithm failed for some reason at that point. Thus, if standard DM-PMC is employed and we take
the average value of the iterations as the final estimate, we observe that unsuccessful iterations may influence the
result too much. This is the reason why standard DM-PMC gave such bad results in this case.
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Table 2. IS estimates of each iteration and each run of the algorithm

Run Ĵ1 Ĵ2 Ĵ3 Ĵ4 Ĵ5

1 2.7212e-03 3.5827e-03 3.3617e-03 2.8745e-03 2.9510e-03

2 3.2096e-03 2.7931e-03 3.2212e-03 3.3917e-03 3.0087e-03

3 3.1344e-03 3.4998e-03 3.4195e-03 3.4020e-03 3.2703e-03

4 3.7343e-03 3.7986e-03 3.0019e-03 3.2253e-03 3.0866e-03

5 3.4235e-03 3.1159e-03 3.1599e-03 3.2099e-03 3.2614e-03

6 2.6711e-03 2.8397e-03 3.4325e-03 3.1004e-03 3.3965e-03

7 2.5228e-03 4.5020e-02 4.6297e-03 3.1796e-03 3.0379e-03

8 2.7653e-03 2.9092e-03 3.2981e-03 3.0898e-03 3.1159e-03

9 3.9200e-03 3.1840e-03 3.2795e-03 3.0589e-03 2.8810e-03

10 3.1782e-03 4.4611e-01 5.0749e+07 1.5332e-03 1.7153e-03

Table 3. Optimal weights for each run of the algorithm

Run α1 α2 α3 α4 α5

1 0.0329 0.1137 0.1866 0.3390 0.3278

2 0.0286 0.3108 0.1948 0.1755 0.2903

3 0.0295 0.2585 0.2819 0.1566 0.2734

4 0.0211 0.0605 0.2641 0.3052 0.3491

5 0.0246 0.3230 0.1509 0.2326 0.2690

6 0.0313 0.3617 0.2645 0.2818 0.0607

7 0.0929 0.0000 0.0035 0.3182 0.5855

8 0.0265 0.3056 0.1726 0.2852 0.2100

9 0.0195 0.3163 0.0672 0.2335 0.3634

10 0.0677 0.0000 0.0000 0.0450 0.8873

The optimal weights estimated with the proposed approach are presented in Table 3. We now observe that the
weights given to those very bad estimates indicated in Table 2 are close to zero. This is the reason why the proposed
optimal weights gave accurate results in Table 1, the approach gave very small weights to failed IS iterations. The
resulting algorithm became more stable and accurate.

8 Conclusions

In this work we proposed a modification for AIS schemes in the context of reliability analysis. In this mod-
ification we try to pursue optimal weights to give to the IS estimate of each iteration, instead of given the same
weight to all iterations as occurs in standard AIS. We concluded that these optimal weights should be inversely
proportional to the variance the IS estimate of each iteration. The numerical example studied shows that this mod-
ification leads to a more stable algorithm that provides more robust results. We highlight that this is a preliminary
work on the subject and that some aspects should be further investigated in the future.
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