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Abstract. The use of anisotropic laminated plates as structural elements has become increasingly common due to 

their ability to emphasize desired mechanical characteristics and reduce undesired ones, depending on the laminate 

stacking sequence and angles. Although applications of structural optimization methods to define the optimum 

laminate stacking angle are common in the literature, analyses of the influence of this angle on the behavior of the 

plate are relevant when seeking to increase laminate efficiency. In addition, consideration of the uncertainties that 

affect the structural response of these elements is still under development and open to discussion. Structural 

reliability is a suitable tool for dealing with these uncertainties. This article aims to analyze the influence of the 

stacking angle on the first-ply failure probability, taking into account the probability distributions of the random 

variables involved. The First Order Reliability method and Tsai-Wu failure criteria are employed. The plate 

considered herein is subjected to transversal static loading and made up of orthotropic laminae in oblique 

directions. The structure is modelled using the Finite Element Method, with Reissner-Mindlin kinematic theory in 

the linear elastic regime. The results indicated significant variability in the failure probability depending on the 

stacking angle. 
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1  Introduction 

In the field of civil engineering, composite materials have become increasingly common, due to the search 

for materials that ensure more sustainable development compared to cement and steel, characterized by their high 

environmental impact in manufacturing, and also to their ability to enhance specific material properties, as noted 

by Wasim et al. [1]. This application is particularly prevalent in structural engineering, where composites 

contribute to improved mechanical strength, resistance to high temperatures, and impact protection for 

infrastructure and vehicles. An example of the application of laminated composites in civil engineering, according 

to Chróścielewski et al. [2], is the use of carbon fibers or glass fibers reinforced with plastic in the construction of 

walkway structures. 

In general, laminated composites are subject to complex stress states, and various uncertainties affect their 

behavior, so that structural reliability analysis may be necessary. The literature contains numerous studies that 

vary in the type of structural analysis (linear or non-linear), the type of loading (transverse or in-plane), the 

geometry of structural elements (such as plates with holes), the application of different failure criteria, and different 

definitions of failure criteria. Kam et al. [3] investigated the effect of ply stacking sequence on the reliability of 
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plates subjected to static loading in the non-linear regime with large deflections, using the maximum stress rupture 

criterion to determine an optimal orientation in plate design. In a related study, Kam et al. [4] analyzed plate 

reliability based on the concept of the first ply failure, exploring how different probability distributions of random 

variables influence the probability of plate failure. Additionally, Sriramula [5] provided an overview of stochastic 

modeling approaches for fiber-reinforced plastic composites from a probabilistic standpoint, aiming to classify the 

uncertainties inherent in such modeling. 

In this context, the objective of this paper is to assess the impact of the stacking angle of a symmetrical 

laminated composite plate on its probability of failure. 

2  Formulations for the structural reliability analysis of laminated plates 

2.1 Composite laminated plate 

As a linear elastic regime is assumed for the material's response, the deformations are obtained using Hooke's 

law, as presented by Mendonça [6], and are written for a ply 𝑘 

 𝛔 = 𝐐̅k𝛆   and   𝛕𝐬 = 𝐂̅k𝛄𝐜, (1) 

 𝛔 = {𝛔𝐱, 𝛔𝐲, 𝛕𝐱𝐲}
𝑇
   and   𝛕𝐬 = {𝛕𝐲𝐳, 𝛕𝐱𝐳}

𝑇
, (2) 

 𝛆 = {𝛆𝐱, 𝛆𝐲, 𝛄𝐱𝐲}
𝑇
   and   𝛄𝐜 = {𝛄𝐲𝐳, 𝛄𝐱𝐳}

𝑇
, (3) 

where 𝐐̅ and 𝐂̅ are the reduced stiffness matrices for in-plane and shear stresses, respectively. These matrices 

depend on the properties in the main directions of the ply, namely the moduli of elasticity in the longitudinal and 

transverse directions (𝐸1 and 𝐸2), the shear modulus in the three planes (𝐺12, 𝐺13 and 𝐺23), the Poisson's ratio also 

in the three planes (𝜈12, 𝜈13 and 𝜈23). 

The plies used in laminates are generally reinforced by unidirectional fibers aligned in direction 1, making 

them symmetrical about this same axis. Direction 1 is defined as the longitudinal direction, direction 2 as the 

transverse direction, and direction 3 as the normal direction. Considering that the thickness of the ply is much 

greater than the diameter of the fibers, this material is termed transversely isotropic in the 2-3 plane, and the 

relationships shown in eq. (4) are demonstrated in Mendonça [6] 

 𝐸3 = 𝐸2,    𝜈13 = 𝜈12,    𝜈23 = 𝜈32,    𝐺13 = 𝐺12,    𝐺23 =
𝐸2

2(1+𝜈23)
   and   𝑆13 = 𝑆12. (4) 

The first-order kinematic model is defined by the following hypotheses 

 𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦, 𝑡) + 𝑧𝜓𝑥(𝑥, 𝑦), (5) 

 𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦, 𝑡) + 𝑧𝜓𝑦(𝑥, 𝑦),  

 𝑤(𝑥, 𝑦, 𝑧) = 𝑤(𝑥, 𝑦),  

where 𝑢0, 𝑣0, 𝑤, 𝜓𝑥, and 𝜓𝑦 are the generalized displacement functions with respect to the reference surface.  

Linear strain-displacement relationships are defined by 

 𝜀𝑥 =
𝜕𝑢

𝜕𝑥
,   𝜀𝑦 =

𝜕𝑣

𝜕𝑦
,   𝜀𝑧 = 0,   𝛾𝑥𝑦 =

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
,   𝛾𝑦𝑧 =

𝜕𝑤

𝜕𝑦
+ 𝜓𝑦   and   𝛾𝑥𝑧 =

𝜕𝑤

𝜕𝑥
+ 𝜓𝑥. (6) 

It is possible to identify and name the constituent parts of deformations 

 𝜺 = 𝜺𝟎 + z𝛋, (7) 

where 𝜺𝟎 represents the membrane deformations responsible for the in-plane deformations of the reference surface, 

indicating an extension or contraction and 𝛋 represents the curvatures.   

The normal forces (N), shear forces (V), and bending moments (M) in a laminate are obtained by  

 {
𝐍
𝐌

} = 𝐂 {𝛆𝟎

𝛋
}   and   𝐕 = 𝐄𝛄𝐜, (8) 

 𝐂 = [ 
𝐀 𝐁
𝐁 𝐃

 ], (9) 
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where 𝐴𝑖𝑗, 𝐵𝑖𝑗 and 𝐷𝑖𝑗 with i,j = 1,2 and 6, and 𝐸𝑖𝑗with i,j = 4 and 5 

 𝐴𝑖𝑗 = ∑ 𝑄̅𝑖𝑗
𝑘 (𝑧𝑘 − 𝑧𝑘−1)𝑁

𝑘=1 ,   𝐵𝑖𝑗 = (
1

2
) ∑ 𝑄̅𝑖𝑗

𝑘 (𝑧𝑘
2 − 𝑧𝑘−1

2 )𝑁
𝑘=1 ,   𝐷𝑖𝑗 = (

1

3
) ∑ 𝑄̅𝑖𝑗

𝑘 (𝑧𝑘
3 − 𝑧𝑘−1

3 )𝑁
𝑘=1    and  (10) 

 𝐸𝑖𝑗 = 𝑘 ∑ 𝐶𝑖̅𝑗
𝑘𝑁

𝑘=1 . (11) 

The equilibrium equations are defined by Zienkiewicz and Taylor [7] 

 
𝜕𝜎𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑧

𝜕𝑧
+ 𝜌𝑏𝑥 = 0   and   

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦

𝜕𝑦
+

𝜕𝜏𝑦𝑧

𝜕𝑧
+ 𝜌𝑏𝑦 = 0. (12) 

2.2 Finite Element Method (FEM) and stress smoothing 

The stiffness matrices 𝐊 and the vector of consistent forces 𝐅 are obtained by the Principle of Virtual Work 

for the first-order kinematic method (Mindlin). The in-plane stresses are obtained at a point (x,y) of an element 𝑒 

by 

 𝛔xlk = 𝐐̅k{𝛆0 + z𝛋}   and   {𝛆0

𝛋
}

e

= 𝐁e𝐔e, (13) 

where 𝐁 represents the rows of the deformation matrix associated with 𝛆𝟎 and 𝛋, and 𝐔 is the vector of FEM nodal 

displacement values. The transverse stresses are obtained by integrating the equations in (11) 

 𝜏𝑥𝑧
𝑖 (𝑧) = 𝜏𝑥𝑧

𝑖 (−𝐻/2) − ∫ [
𝜕𝜎𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
] 𝑑𝑧

𝑧

−𝐻/2
   and   𝜏𝑦𝑧

𝑖 (𝑧) = 𝜏𝑦𝑧
𝑖 (−𝐻/2) − ∫ [

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦

𝜕𝑦
] 𝑑𝑧

𝑧

−𝐻/2
. (14) 

The stress components in the ply’s principal directions are obtained by 

 𝛔𝟏𝐥𝐤 = 𝐓k𝛔xlk    and   𝛕1lk = 𝐓𝐜
k𝛕xlk , (15) 

where 𝐓𝐤 and 𝑻𝑐
𝑘 denote the rotation matrices of the ply k, defined by 

 𝐓k = [ 
cos2θ sen2θ 2senθcosθ
sen2θ cos2θ −2senθcosθ

−senθcosθ senθcosθ cos2θ − sen2θ

 ]   and   𝐓𝐜
k = [ 

cosθ −senθ
senθ cosθ

 ]. (16) 

The stress smoothing and recovery procedure employed are based on the Zienkiewicz-Zhu method as 

presented in Zienkiewicz and Zhu [8]. This method assumes that the values of 𝜺𝟎and 𝛋 are calculated at a set of 

sample points on the mesh, which are then used to generate a continuous smoothed approximation of degree p, 

consistent with the displacements, in the form 

 𝛆0(𝑥) = 𝐍𝑒(𝑥)𝐄   and   𝛋(𝑥) = 𝐍𝑘(𝑥)𝐊, (17) 

where the matrices 𝐍𝑒(𝑥) and 𝐍𝑘(𝑥) are constructed using the same displacement interpolation functions 

employed in the FEM model. 𝐄 and 𝐊 represent the nodal values of membrane deformations and curvature obtained 

through the smoothing process. Consequently, the recovered in-plane stresses are 

 𝛔(𝑥, 𝑧) = 𝐐k[𝐍e(𝑥)𝐄 + 𝑧𝐍k(𝑥)𝐊]. (18) 

2.3 Tsai-Wu criterion 

The Tsai-Wu failure criterion, proposed in 1971, originates from the von Mises yield criterion for isotropic 

materials, adapted for use with orthotropic materials as discussed in Lopez et al. [9]. According to Mendonça [6], 

this criterion allows for the definition of the following limit state function: 

 𝑔(𝐗) = 1 − ((
1

Xt
−

1

Xc
) σ1 + (

1

Yt
−

1

Yc
) σ2 +

σ12

XtXc
+

σ22

YtYc
+ (

τ12

S12
)

2

−
σ1σ2

√XtXcYtYc
),  (19) 

where X = {Xt, Xc, Yt, Yc , S12, 𝜎1, 𝜎2 and 𝜏12}. 
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2.4 Probabilistic first-ply failure load analysis 

The probabilistic first-ply failure analysis involves assessing the stress state in each ply of the laminate and 

evaluating its failure probability based on a selected failure criterion. It assumes that failure occurs when the first 

ply reaches the criterion. According to the assumptions previously made, in-plane deformations vary linearly 

through the laminate thickness, while in-plane stresses vary linearly within each ply, and transverse stresses vary 

parabolically. 

2.5 Structural Reliability and the First Order Reliability Method  

Given a vector of random variables X describing uncertainties affecting the structural response, with its 

respective joint probability density function 𝑓𝑿(𝐱), and considering a limit state function 𝑔(𝑿) associated with a 

specific failure mode where negative values indicate failure, the failure probability related to this failure mode, as 

outlined in Melchers et al. [10], is given by 

 𝑃𝑓 = 𝑃[𝐺(𝐗) ≤ 0] = ∫ … ∫
𝑔(𝑿)≤0

 𝑓𝑿(𝐱)𝑑𝐱. (20) 

With a few exceptions, the integration of the above equation cannot be performed analytically. Therefore, it 

is possible to simplify the probability density function in the integrand using iterative techniques to obtain reliable 

estimates of failure probabilities.  

The First Order Reliability Method (FORM), as described by Mínguez [11], aims to determine the failure 

probability given by eq. (19) through three steps: 

1. transform the vector of random variables of the problem X, which follows a given joint probability 

distribution, into a vector of random variables Y with a standard normal distribution (zero mean and unit standard 

deviation); 

2. identify the most probable point of failure in the standard normal space, known as the design point; 

3. linearize the surface of the limit state equation at the design point and compute the result analytically. 

The obtained result is typically approximate due to the common occurrence of non-normal distributions, 

correlated variables, and non-linear limit state equations. The search for the design point can be facilitated by using 

algorithms such as the improved Hassofer, Lind, Rackwitz and Fiessler (iHLRF) method. 

3  Results and discussion 

To evaluate the influence of the ply stacking angle on the failure probability of a symmetrical laminated 

composite plate under transverse loading, the plate is modeled using the FEM. It has a rectangular geometry with 

dimensions 𝑎 = 500mm and 𝑏 = 250mm, and is simply supported. The mesh is composed of 4x4 quadrilateral 

Lagrangian elements with 9 nodes. The model adopts the first-order kinematic theory of Reissner-Mindlin within 

the linear-elastic regime. The stiffness matrices, K, and the force vector, F, are computed using Gauss-Legendre 

numerical integration, with selective subintegration of 2x2 points. Stresses are extracted and smoothed using a 

uniform grid of points distributed across the element. The Tsai-Wu failure criterion, commonly referenced in the 

literature, is employed. FORM is employed to estimate failure probabilities.  

As shown in Figure 1, the laminate consists of 4 orthotropic plies arranged symmetrically with orientations 

of [𝜃, −𝜃, −𝜃, 𝜃]. The thicknesses of the plies are ℎ1 = ℎ4 = 25mm and ℎ2 = ℎ3 = 1,5ℎ1 = 37,5mm, 

determined using the ratio 𝑎/𝐻 = 4, where H represents the total thickness of the laminate. 

 In the proposed analysis, the quadratic approximation method is employed to find the root of the limit state 

function in the search for the load that leads to failure. 

The plate is subjected to a distributed static load q(x,y), given by 

 𝑞(𝑥, 𝑦) = 𝑞0𝑠𝑒𝑛 (
𝜋𝑥

𝑎
) 𝑠𝑒𝑛 (

𝜋𝑦

𝑏
), (21) 

where 𝑞0 represents the magnitude of the load.  

Considering various stacking angles and values for the maximum loading intensity, the results shown in 

Figure 2 were obtained. It is assumed that each ply is composed of carbon fibers embedded in an epoxy matrix, 
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with mechanical properties and statistical characterizations as detailed in Table 1, following Kimiaeifar [12].  

Figure 1: Cross-sectional view of the analyzed case. 

Table 1. Statistical characterization of variables 

Mechanical properties Symbol Distribution Mean COV 

Longitudinal modulus of elasticity [MPa] E1 Lognormal 131000 0,106 

Transverse modulus of elasticity [MPa] E2 = E3 Lognormal 8000 0,136 

Poisson's ratio ν12 = ν13 = ν23 Lognormal 0,3 0,18 

In-plane shear modulus 12[MPa] G12 = G13 Lognormal 5000 0,1 

Shear modulus in plane 23 [MPa] G23 Lognormal 4000 0,1 

Longitudinal tensile strength [MPa] Xt Normal 1150 0,135 

Longitudinal compressive strength [MPa] Xc Normal 750 0,13 

Transverse tensile strength [MPa] Yt Weibull 47 0,104 

Transverse compressive strength [MPa] Yc Weibull 68 0,11 

Shear strengths in planes 12, 13 and 23 [MPa] S12 = S13 = S23 Weibull 59 0,1 

 

Figure 2: Probability of failure as a function of maximum loading intensity and stacking angle. 

Analysis focusing on the load value is common in the design of composite elements. It is observed that within 

the 0° to 90° range, at a fixed failure probability, increasing the stacking angle allows for higher supported loads, 

with maximum values observed at the 60° angle among those analyzed. Conversely, lower load values are 

acceptable for angles such as 75° and 90°. 

Setting a target loading value, such as 120 MPa, reveals that the laminate with the lowest failure probability 

is at the 60° stacking angle, with a failure probability lower than 10˗6. Note that at a 75° angle the failure probability 

associated with this loading level increases to about 10˗4. 
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Analyses can also be conducted based on target failure probabilities. For a 1-year return period, considering 

moderate consequences of failure and average costs for enhancing structural safety, the Joint Committee on 

Structural Safety (JCSS) [13] recommends a target failure probability of 10˗5. For this target value, it is observed, 

for instance, that the plate with a stacking angle of 45° could withstand loads of approximately 80 MPa, whereas 

for a 30° angle, the acceptable load reduces to about half of the former. 

4  Conclusion 

This study investigates the impact of the stacking angle of plies on the probability of failure, considering a 

simply supported rectangular plate under sinusoidal loading. The Tsai-Wu failure criterion is employed to define 

the plate’s limit state function, assuming that the failure of any single ply results in the failure of the entire plate. 

The results revealed significant variability in the probability of plate failure depending on the stacking angle. 

For instance, at a maximum loading intensity of 80 MPa, the probability of failure is approximately 100% for 

stacking angles of 0° and 15°, whereas it is less than 10˗5 for angles of 45°, 60°, 75° and 90°. This highlights the 

importance of selecting an appropriate stacking angle to ensure acceptable levels of reliability for the structural 

element. Additionally, it was observed that among the analyzed angle values, the 60° angle consistently exhibited 

the highest levels of reliability across all considered loading intensities. 

Ultimately, tools such as the one developed here can aid in the design of composite plates, proving applicable 

in both research and engineering practice. 
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