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Abstract. In compliance-based topology optimization, methodologies for updating design variables, such as the
widely-used Optimality Criteria (OC), play a pivotal role in efficiently addressing problems with monotonically
decreasing objectives subject to certain design constraints. However, despite its effectiveness, the OC method is
based on first-order optimality conditions and does not incorporate second-order terms. To harness the benefits of
second-order terms, in this work, we use conservative convex separable approximations (CCSA) of the objective
function, alongside the Powell symmetric Broyden (PSB) update for estimating the diagonal terms of the Hessian
matrix. Three variations are considered: quadratic, logarithmic, and square-root approximations. This approach
aims to enhance the efficiency and effectiveness of compliance minimization in topology optimization problems
subject to a volume constraint. To demonstrate the efficacy of the aforementioned methodology, a case study
is presented and evaluated using the CCSA update scheme. The obtained results and performance metrics are
compared to those of the OC method, providing evidence of the advantages offered by the proposed approach.

Keywords: Compliance-based topology optimization, Conservative convex separable approximation, PSB Hes-
sian estimation.

1 Introduction

The traditional Optimality Criteria (OC) update scheme [1, 2] is well-suited for problems with monotonically
decreasing objective functions and simple constraints. It is commonly applied to compliance minimization prob-
lems subjected to a maximum allowable volume of material. This method is renowned for its excellent convergence
properties, computational efficiency, and ability to handle large-scale optimization problems [3].

The OC method incorporates the objective and constraint sensitivities in its update schema, but does not con-
sider second-order derivatives. In this way, this study proposes the use of conservative convex separable approx-
imations (CCSA) [4] of the objective function, considering different approximation functions such as quadratic,
logarithmic, and square-root forms. Unlike the OC method, which employs a separable linear approximation and
results in a multiplicative update term, the CCSA update scheme operates additively. This distinction can lead
to divergent behaviors in density recovery during the iterative process of topology optimization. Additionally,
this work incorporates the Powell symmetric Broyden (PSB) quasi-Newton update [5, 6] to estimate the diagonal
terms of the second-order Hessian matrix [7], enhancing the efficiency of the proposed methodology. The PSB
update is particularly advantageous because it maintains the symmetry and positive definiteness of the Hessian
approximation, which is crucial for ensuring stable and efficient convergence.

The focus of this paper is on applying this novel CCSA-PSB update scheme to solve compliance-based prob-
lems. We integrate the CCSA-PSB update scheme into the PolyTop [8] framework to investigate its performance
on compliance-based optimization problems. PolyTop is a versatile and widely-used framework for topology op-
timization. Our approach involves a analysis of computational efficiency, and solution quality of the proposed
method. By comparing the results obtained using the CCSA-PSB update scheme with those from traditional OC
method, we aim to demonstrate the potential advantages of our approach.
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2 Topology optimization problem

The compliance-based topology optimization problem is described using a nested formulation:

min
z

f = F Tu

s.t. g =

N∑
e=1

ϕV (ẑe)Ve

N∑
e=1

Ve

− v ≤ 0

zmin ≤ z ≤ zmax

with Ku = F

(1)

where the design variables z consist of generalized densities assigned to each one of the N elements.
The objective of the optimization problem is to minimize the system’s compliance f . A maximum volume

constraint g is considered, where Ve is the original volume of element e, v is the maximum volume fraction
required, and ϕV is the material interpolation function for volume, which is applied to the elemental value ẑe of
element e. Bound constraints are also used, where zmin and zmax are the lower and the upper bounds for the design
variables, respectively.

The displacement vector u is determined to ensure the equilibrium of the system given the external force
vector F and the global stiffness matrix K, which is defined accumulating each element stiffness contribution and
considering the material interpolation function for stiffness ϕE

K =

N∑
e=1

ϕE (ẑe)K
0
e (2)

where K0
e is the local stiffness matrix of element e.

A linear density filter is applied to ensure smoothness of the design field. In this way, a sparse filter matrix χ
maps design to elemental values based on a filtering radius r. The terms of the filter matrix are defined as:

χij =

max

{
0, Vj

(
1− ∥xi − xj∥

r

)}
∑

j∈Si
Vj

(
1− ∥xi − xj∥

r

) (3)

where xi is the centroid position of element i and Si is the set of indices of j elements whose centroid falls within
radius r of the centroid of element i. Therefore, a set of elemental values ẑ is defined as filtered densities, ẑ = χz.

As the material interpolation, SIMP [9] is used. This method applies transformations into elemental values
to better describe stiffness and volume factors, using the functions ϕE and ϕV , respectively. SIMP is a widely
adopted method in which material densities are continuously varied between design variables lower bound value
(void) and upper bound value (solid),

ϕE (ẑe) = ε+ (1− ε) ẑpe (4)
ϕV (ẑe) = ẑe (5)

where p is a penalization parameter and ε represents the Ersatz parameter.

3 Update scheme

Some conservative convex separable approximations (CCSA) were proposed by Svanberg [4]. In this work,
quadratic, logarithmic and square root approximations are considered, defined as:
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f̃QUAD (z) = f
(
z(k))+∇f

(
z(k))T (z − z(k))+ 1

2

N∑
e=1

ρe

(
ze − z(k)

e

σ

)2

(6)

f̃LOG (z) = f
(
z(k))+∇f

(
z(k))T (z − z(k))− 1

2

N∑
e=1

ρe ln

[
1−

(
ze − z(k)

e

σ

)2
]

(7)

f̃SQRT (z) = f
(
z(k))+∇f

(
z(k))T (z − z(k))+ N∑

e=1

ρe

1−
√√√√1−

(
ze − z(k)

e

σ

)2
 (8)

where ρe and σ are positive parameters of the approximation.
Note that for logarithmic and square root approximations, the update of design variables is subjected to

specific limitations,
∥∥ze − z(k)

e

∥∥ < σ for logarithmic approximation and
∥∥ze − z(k)

e

∥∥ ≤ σ for square root approxi-
mation, whereas no limits are imposed for the quadratic approximation.

It is also noted that the when evaluating the Hessian of the quadratic, logarithmic and square root CCSA
functions (see equations (6), (7) and (8)) at z(k), they all yield the same result:

h̃e

(
z(k)) = ∂2f̃

∂z2e

∣∣∣∣∣
z=z(k)

=
ρe
σ2

(9)

and once the Hessian is estimated, the parameter ρe can be determined in terms of the limiting factor σ.
In this way, a PSB Hessian estimation approach is considered based on the methodology proposed by Giraldo-

Londoño and Paulino [7] using a diagonal approximation based on the Powell symmetric Broyden (PSB) quasi-
Newton update. The Hessian can be estimated in a iterative manner,

h̃
(
z(k)) ≈ h̃

(
z(k − 1))+ c(k)Ts(k) − h̃

(
z(k − 1)

)T
s(k)2

(s(k)2)
T
s(k)2

s(k)2 (10)

where c(k) and s(k) are the difference between sensitivities and the difference between design variables from

iteration k to iteration k + 1,

c(k) =
∂f̃

z

∣∣∣∣∣
z=z(k)

− ∂f̃

z

∣∣∣∣∣
z=z(k − 1)

(11)

s(k) = z(k) − z(k − 1) (12)

Initial values of sensitivity and Hessian approximation are respectively considered as zero and a small value
(e.g., 10−3) for element contributions.

4 MBB beam problem

In order to illustrate the proposed methodology, a MBB beam problem [10] is presented. The domain is
defined by a rectangular region of length 2L and height H (refer to Figure 1a). A vertical load of intensity P is
applied at the central top position. Due to symmetry of the problem, only half of the domain is analyzed (refer to
Figure 1b).

𝑃
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(a)
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𝐿

(b)

Figure 1. MBB beam problem, loading and support conditions: (a) full domain; (b) half of the domain considered
due to problem symmetry.
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The properties of the MBB beam optimization problem are defined as: domain length L = 3 m, domain
height H = 1 m, maximum volume fraction v = 0.5, load intensity P = 1 N, Young’s modulus of the material
E0 = 1.0, Poisson’s raio of the material ν = 0.3, filtering radius r = 0.04, Ersatz parameter ε = 10−4, CCSA move
parameter σ = 0.2. The initial guess consists of all design variables set to the maximum volume fraction value.
A continuation-based penalization scheme is employed and the penalty parameters used for SIMP method are {1,
1.5, 2, 2.5, 3, 3.5, 4}. The analysis also assumes plane stress conditions.

The optimization problem is evaluated for three different levels of mesh refinement, considering 2,700, 14,700
and 30,000 polygonal finite elements. Figure 2 presents the final topologies obtained for each evaluated model.

(a) OC-2700, objective: 51.84 N.m (b) OC-14700, objective: 53.47 N.m (c) OC-30000, objective: 53.94 N.m

(d) QUAD-2700, objective: 50.99 N.m (e) QUAD-14700, objective: 52.03 N.m (f) QUAD-30000, objective: 52.47 N.m

(g) LOG-2700, objective: 52.41 N.m (h) LOG-14700, objective: 52.13 N.m (i) LOG-30000, objective: 52.25 N.m

(j) SQRT-2700, objective: 51.11 N.m (k) SQRT-14700, objective: 52.67 N.m (l) SQRT-30000, objective: 52.69 N.m

Figure 2. Final tolopogies for OC, CCSA-PSB quadratic (QUAD), CCSA-PSB logarithmic (LOG) and CCSA-
PSB square root (SQRT) approximations, considering 2700, 14700 and 30000 elements.

Figure 3a displays the number of iterations required for the convergence of each evaluated model. Figure 3b
illustrates the computational time expended by each evaluated model, along with a relative comparison between
the CCSA-PSB approximations and the OC update scheme.
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Figure 3. Comparing metrics obtained from OC with CCSA-PSB update scheme: (a) iterations required for
convergence; (b) measured computational time.
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The final topologies gain resolution as the number of elements increases. For models with 2,700 and 14,700
elements, the smallest compliance values are obtained using the CCSA-PSB quadratic approximation, with values
of 50.99 N.m and 52.03 N.m, respectively. For models with 30,000 elements, the smallest objective function value
is achieved using the CCSA-PSB logarithmic approximation, at 52.25 N.m. Across all element counts, the highest
objective function values are generally produced by the OC update scheme, except for the 2700-element model,
where the CCSA-PSB logarithmic approximation yields a final value of 52.41 N.m.

The iterations required for convergence of the evaluated models were assessed using the continuation penal-
ization scheme. For models with 2,700 elements, the OC update scheme required fewer iterations and less com-
putational time than the CCSA-PSB approximations. For models with 14,700 elements, the OC update scheme
demanded 2,422 iterations, whereas the CCSA-PSB approximations required 1,788 iterations for the quadratic
approximation, 2,097 iterations for the logarithmic approximation, and 1,708 iterations for the square-root approx-
imation. In terms of computational time, all CCSA-PSB approximations also outperformed the OC update scheme.
Finally, for models with 30,000 elements, only the logarithmic approximation of the CCSA-PSB update scheme,
with 3,519 iterations and a computational time of 2,506.02 seconds, performed worse than the OC update scheme,
which required 3,396 iterations and 2,438.98 seconds of computational time.

5 Conclusions

In this study, we have introduced and evaluated a methodology for compliance-based topology optimization,
leveraging conservative convex separable approximations (CCSA) and the Powell symmetric Broyden (PSB) quasi-
Newton update scheme. By considering quadratic, logarithmic, and square-root approximations, we aimed to
enhance the efficiency and effectiveness of compliance-based minimization problems subjected to a maximum
volume constraint.

Our findings indicate that the proposed CCSA-PSB update scheme generally outperforms the traditional
Optimality Criteria (OC) method, particularly in terms of convergence behavior and computational efficiency.
Specifically, for models with 2,700 and 14,700 elements, the CCSA-PSB quadratic approximation achieved the
smallest compliance values, while for models with 30,000 elements, the logarithmic approximation yielded the
smallest objective function value. Across all element counts, the CCSA-PSB approximations typically required
fewer iterations and less computational time compared to the OC method, except for the largest model where the
logarithmic approximation performed slightly worse in terms of computational time.

Our results suggest that the CCSA-PSB methodology offers a robust and computationally efficient alternative
to traditional OC-based approaches for the presented example. Future work may focus on further refining the
CCSA-PSB approximations and exploring their applicability to a wider range of optimization problems, including
non-monotonic objective functions and more complex constraints. The insights gained from this study pave the
way for more efficient and effective optimization techniques in structural design and other engineering applications.
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