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Abstract. Topological optimization seeks to determine the optimal distribution of material within a design domain 
(2D/3D) to optimize structural performance following imposed design constraints. This material distribution can 
vary continuously, resulting in complex shapes that are lighter than the original structure and take better advantage 
of the strengths of the materials. The incorporation of multiple loads in topological optimization increases the 
complexity of the problem, as it requires simultaneous considerations of different types of loads and their 
interactions with the structure in problems that have different degrees of freedom. This can include analyzing load 
combinations due to self-weight, other load combinations, or even dynamic and thermal loads. This work 
developed and implemented a structural 3D topological optimization model that takes into account these multiple 
loads in MATLAB language. Practical examples of optimization cases considering multiple loads are presented, 
as well as comparisons with results already existing in the literature to demonstrate the accuracy of the proposed 
algorithm. The results demonstrate a different final topology when considering independent or concurrent loads. 
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1. Introduction 

Topological optimization aims to identify the most efficient structural configurations within a defined domain 
by systematically adding or removing material. This ensures the structure can withstand predefined loads and 
specific boundary conditions, focusing on minimizing material usage while balancing weight and stiffness. 
Although topological optimization is relatively recent, numerous studies have addressed increasingly complex 
practical problems. 

The Bi-directional Evolutionary Structural Optimization (BESO) algorithm, developed by Huang and Xie 
[1], evaluates material parts by adding and removing them from the domain to replace where they are most efficient 
for structure formation. Unlike other methods, BESO finds an optimal configuration without considering the initial 
setup and is independent of the finite element mesh. However, traditional BESO is typically limited to ideal 
applications, as real structures that are subjected to one type of load, which limits its effectiveness in real-world 
scenarios where multiple loads are present. 

Without topological optimization, a project might have excess material in some regions or a lack thereof in 
others, leading to inefficient use of material strength. Increased component weight needs a more robust part, 
resulting in higher energy consumption due to high inertia and difficulty in movement. Topological optimization 
can enhance machine performance and produce lighter parts that better use material strength. Optimized structures 
can withstand similar or greater loads than non-optimized structures, possibly with fewer parts. However, 
optimized material distribution can result in complex geometries that make production complicated. Real-world 
applications require simultaneous analysis of various load types and combinations, including dynamic and thermal 
loads, introducing several degrees of freedom. Consequently, considering multiple loads in topological 
optimization becomes crucial for realistic projects. 
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This work aims to develop and implement a 3D structural topology optimization model accounting for 
multiple loads. Finite element analysis is implemented for three-dimensional elements with eight nodes using 
MATLAB (2014) and the BESO methodology. Practical optimization examples considering multiple loads are 
presented, with comparisons to existing literature results, as well as a final larger example, all to demonstrate the 
proposed algorithm's accuracy. 

2. Literature Review 

Topology optimization enables the design of structures that meet performance requirements by considering 
various loads, ensuring strength without wasting material or adding excess weight. Considering multiple loadings 
results in more realistic design solutions and provides a comprehensive view of structural behavior under various 
operational scenarios.  

One of the first significant works addressing multiple loads in optimization was by Young et al. [2]. They 
implemented a BESO formulation with a limit stress criterion for 3D problems, considering multiple loads through 
the weighted average of Compliance for each combination. They checked stress constraints (von Mises) for each 
combination. However, the work lacked important details, such as the material stress limit used. 

Bendsøe and Sigmund [3] presented the Solid Isotropic Material with Penalization (SIMP) method, which 
eliminates elements with low influence on stiffness by applying penalties to their densities and elastic moduli, 
making them virtually empty in an iterative process. The method uses Finite Element Analysis (FEA), creating a 
mesh that divides the domain into finite elements of 8 nodes. Extended to handle multiple loads, it minimizes the 
weighted average of elastic strain energy (Compliance) for each load. However, SIMP produced intermediate 
density areas, or "gray areas," and was prone to overestimate Compliance in these elements. 

Zhou and Li [4] optimized 2D structures under multiple loads using an orthotropic fiber-reinforced composite 
model. Instead of averaging load compliance, they aligned fiber orientations with principal stress orientations and 
arranged fiber densities according to the strains along these orientations for the load combinations. The iterative 
process continued until no more shear stresses were present in the main elements, forming axially stressed bar 
structures. The optimization bound the elastic matrix to approximate optimal structures for each load case. 

Lu and Tong [5] tackled the multiple loads problem by averaging the Compliance of each load, weighted by 
predefined values, using SIMP for topology optimization. Their work also optimized fiber orientations in 
composite materials and allowed for multiple materials using the MIST (Moving Iso-Surface Threshold) strategy. 

Stragiotti et al. [6] aimed the minimization of the volume of 3D truss structures in aeronautical structures 
under multiple load cases, with constraints in maximum stress, and buckling load factors. Their optimization 
involved a two-step process: sequential linear programming followed by heuristic methods to refine the initial 
solution. Then, they applied IPOPT (Interior Point Optimizer) to a complete nonlinear optimization problem, 
ensuring all constraints remained valid. This work is closest to the 3D topology optimization of systems but leans 
more towards parametric shape optimization than pure topology optimization. 

In any of the papers surveyed, the computational cost of the FE mesh is an issue, since even for regular 
structured meshes, simple structures demands intensive computation for assembling and solving large system of 
equations. In the present work, a modified incomplete Cholesky preconditioner with conjugate gradient method, 
present in Matlab is used to alleviate the computation burden. There are BESO versions in the literature that 
circumvents these issues by using unstructured FE meshes, not implemented here. 

3. Theoretical Foundation 

1.1. Topology Optimization 

Topology optimization aims to define the ideal distribution of material, creating an optimal layout, within a 
design domain for a defined objective like stiffness and an amount of available material. Therefore, it optimizes 
structural performance following imposed design constraints, as stated by Jaouadi and Lahmer [7]. This material 
distribution can vary continuously, resulting in complex shapes, lighter than the original structure, and which take 
better advantage of the materials' strength, reducing the amount of deformation energy stored for this structure 
within the available material. 

In this work, a 8-node isoparametric hexahedral three-dimensional FE with 2×2×2 Gaussian integration is 
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used. Here, previously existing topological optimization formulations in the literature are not used due to the fact 
it is not possible to modify integration rules or use non structured meshes. This eight-node element offers a balance 
between accuracy and computational efficiency with flexibility for future improvements in the code. 

1.2. BESO method considering multiple load cases 

The Bi-directional Evolutionary Structural Optimization (BESO) method, presented by Huang and Xie [1], 
defines methods and material criteria for a structure be topologically changed, being the addition or removal of 
material happening simultaneously until the conditions for convergence are met. Multiple load cases are situations 
where structures suffer in reality. There are several possibilities for actions on the structure, such as loads acting 
simultaneously or independently, applied forces that does not act in a single place or direction, moving from one 
region to another, and even supposing that this force was punctual, there would be a chance of it occurring along 
different time instants, among other countless occurrences. Therefore, topological optimization seeks the best way 
that such a structure can be designed to support all multiple loading situations. 

Huang and Xie [1] proposed that the objective function and sensitivity number equations should be minimally 
changed, as the collaboration of each element must be taken into account for all applied loads. In this way, a weight 
factor is proposed in each loading case, thus modifying them as shown in eq. (1) to (4). The idea is to use a 
weighted sum of compliances in each of the load cases, according to its relevance. 
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where 𝑀 is the total number of load cases considered, 𝑤௞  is the weight factor assigned to each load case and 𝐶௞ and 
the Compliance average calculated for each load case. The value imposed for the weight factor ranges from zero 
to one and its sum must be equal to 1. It is observed that the higher  𝑤௞ , the more relevant the load combination is 
concerning other loads, i.e., its choice depends on importance and prevalence (maybe in time) the load combination 
has to the structure to be optimized. 

The discretization of continuous structures using lower-order bilinear or trilinear finite elements can result in 
discontinuous sensitivity numbers, causing issues such as the checkerboard pattern (Jog and Harber [8]). This 
pattern, characterized by interspersed filled and empty elements, hinders optimal structure design. Another issue 
is the mesh dependence, where different finite element mesh refinements create varying topologies. A finer mesh 
can produce many smaller members than intended in the final design. According to Bendsøe and Sigmund [3], 
ideally, mesh refinement should improve finite element modeling and boundary descriptions without adding 
unnecessary detail or distinct qualitative differences. 

To address these issues, a filter is applied that considers the sensitivity of adjacent elements. First, the nodal 
sensitivity number is calculated as a weighted average of the elementary sensitivity numbers, with weights based 
on proximity to the node. This filter creates a minimum radius length scale within the mesh, identifying nodes that 
significantly influence element sensitivity. The filter then smooths the nodal sensitivity numbers into elementary 
sensitivity numbers across the domain. Elemental sensitivity is defined as a weighted average of nearby elements' 
sensitivities, with closer elements having greater influence, ensuring a more coherent and optimal structural design. 

4. Numerical Examples 

The problems presented here are all static, and use the BESO method. They are modelled in three dimensions, 
and optimize multiple loads. The first example was taken from Huang and Xie [1] and the second was inspired by 
the paper by Young et al [2]. Two cases will be considered in each problem to gauge the importance of considering 
or not multiple load cases have in the final topology, where in the first case (a) there will be the application of 
simultaneous loads and in the second case (b) there will be the application of independent loads. 
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1.3. Problem 1 – Beam simply supported with 3 load cases 

Original Problem 1 is a simply-supported beam that supports three loads of 1 N located at the bottom. Figure 
1(a) represents Problem 1. It has a rectangular domain, in millimeters, of 120×40 four-noded flat isoparametric 
elements, presented by Huang and Xie [1]. It was used the 3D eight-noded isoparametric hexahedral FE with the 
same discretization. The parameters used in this case are 𝐸 = 1 Pa, ν=0.3, 𝑉௙௥௔௖ = 0.4, 𝐸𝑅 = 0.02, 𝑝 = 3, 𝑟௠௜௡ =

3,𝜌௠௜௡ = 0.001 kg/m³, ℎ = 0.001 m (element edge), and 𝑤௞ = 1/3 . The objective function is the Compliance, 
in [Nm].  

(a)  (b)  

Figure 1. (a) Domain, boundary conditions, and loadings of Problem 1. (b) Compliance values along iterations 
for case (a) in the present work (3D). 

Figures 2(i) and 2(ii) show, respectively, the final topology obtained by Huang and Xie [1] (in black) and the 
final topology obtained here (in cyan). The convergence graph obtained in this work is presented in Figure 1(b) 
where the progress of the objective function is indicated with blue dots and the volumetric fraction is presented 
with red circles throughout the iterations. Figures 2(iii) and 2(iv) depict, respectively, the final topology by Huang 
and Xie [1] (in black) and the final topology achieved with the algorithm (in cyan).  

 

 (i)  (ii)  

(iii)  (iv)  

Figure 2. Final topologies in Problem 1, for case (a): (i) Haung and Xie [1]-2D and (ii) present work (3D), and 
for case (b): (iii) Haung and Xie [1]-2D, and (iv) present work (3D). 

Figures 2(i) and 2(ii) are very similar to each other, except for the second void that appears on both the left 
and right of the topologies that is larger in Figure 2(i) compared to Figure 2(ii). Now in Case (b), a great similarity 
between Figures 2(iii) and 2(iv) is found, with no significant differences.  

1.4. Problem 2 – Embedded-free beam with 2 load cases and tension constraint 

Problem 2, sketched in Figure 3 is a fixed-free beam in which two loads of 15 kN are applied. This problem 
was inspired by an example from Young et al [2]. It does not exactly reproduce that example because of lack of 
information in the original paper. It has dimensions 160×40×100 mm. Eight-node isoparametric hexahedral 3D 
FE are used with a mesh size of 48×30×12 (17,280 elements). The material is steel (high carbon) and the yield 
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stress limit is 𝜎௟௜௠ = 250 MPa. The parameters used in the optimization are: 𝐸 = 2.1 × 10ଵଵ Pa, ν=0.3, 𝐸𝑅 =

0.005, 𝑝 = 3, 𝑟௠௜௡ = 3, 𝜌௠௜௡ = 0.001 kg/m³, ℎ = 0.001 m(element edge size) and 𝑤௞ = 1/2 . The objective 
function remains the Compliance. The volumetric fraction is free here, being a by-product when the stress limit 
constraint is met for all elements. For stresses below design resistance, the algorithm removes material from the 
working volume following the Compliance sensitivity criterion. For stress values above design resistance, the 
algorithm starts to add material, following the same sensitivity criteria. Thus, iterations continue until the stress 
constraint is met, with the addition or subtraction of elements |𝜎௩ெ − 𝜎௟௜௠| ≤ 𝑡𝑜𝑙. 

 

 

Figure 3. Domain, boundary conditions of Problem 3. (Adapted from Young et al, 1999). 

To verify the safety level of the applied loads, a steel resistance reduction factor ( 𝛾௠ = 1.10) was used as 
well as a load safety factor (𝛾௙ = 1.5 ). The characteristic load in fact is 𝑝௞= 10 kN and therefore the design load 
was defined as 𝑝ௗ = 𝑝௞  . 𝛾௙ =  15 kN. For the yield stress, a characteristic or nominal resistance is assumed as 
 𝑓௬௞ = 275 MPa, therefore, the design resistance must be 𝑓௬ௗ = 𝑓௬௞ /𝛾௠=250 MPa. Unlike Problem 1, here the 
stress constraint will be checked at all integration points of the FE mesh using the von Mises  𝜎௩ெ stress criterion.  

The graph in Figure 4(a) indicates the final topology. Figure 4(b) shows that the final volume fraction resulted 
in 0.075 after 745 iterations. The final Compliance obtained was 1.547 Nm.  

(a)  (b)  

Figure 4. Graph of (a) final topology and (b) volumetric fraction and Compliance × Iteration achieved in Case 
(a) of Problem 2. 

Figure 5(a) shows the final displacements and von Mises stresses. Figure 5(b) shows that the maximum von 
Mises stress (in all elements) did not exceed the established strength limit 𝑓௬ௗ. Figure 6(a) indicates the final 
topology achieved. Figure 6(b) shows the resulted final volumetric fraction of 0.084 after 998 iterations. The 
respective final Compliance was 2,154 Nm.  
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(a)  (b)  

Figure 5. (a) von Mises displacements and stresses. (b) Limit stress and maximum von Mises stress in the 
structure in Case (a) of Problem 2. 

(a)  (b)  

Figure 6. Graph of (a) final topology and (b) volumetric fraction and Compliance × Iteration achieved in Case 
(b) of Problem 2. 

Figure 7(a) shows the final displacements and von Mises stresses. Figure 7(b) shows that the maximum von 
Mises stress in the final structure did not exceed the established limit, remaining within the specified tolerance. 
The peak of the stress in the graph that appears in Figure 7(b) near the 500th iteration refers to the loss of elements 
in the topology similar to the truss, which in the end, was reduced to 4 main parts (main bars) presented in the 
topology in Figure 7(a). 

 

(a)     (b)  

Figure 7. (a) von Mises displacements and stresses. (b) Limit stress and maximum von Mises stress in the 
structure in Case (b) of Problem 2. 

0 100 200 300 400 500 600 700 800

Iterations

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7
108

Max(
vM

)

vM,lim

C
o

m
p

lia
n

ce

V
o

lu
m

e
 fr

a
ct

io
n

[-
]

0 100 200 300 400 500 600 700 800 900 1000

Iterations

1

2

3

4

5

6

7

8
108

Max(
vM

)

vM,lim



Bruno C. Mattia, Herbert M. Gomes 

CILAMCE-2024 
Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 
 

5. Conclusions 

The work aimed to implement a 3D topology optimization model in structures subject to multiple loads. The 
MATLAB software (2014) was used combined with the BESO methodology presented in this work, thus creating 
practical examples based on the literature (Huang and Xie [1] and Young et al [2]). The proposed algorithm proved 
to be efficient, obtaining results similar to those found in previous works. 

The topologies resulting from Problem 1 were very close to those found in Huang and Xie [1] both in 
topology and in values of the objective function. It was perceived as a small change in voids of the lateral region, 
but nothing that would harm the comparison with the result obtained in this work. 

Problem 2 focused on presenting a 3D with multiple loads example. Due to the lack of articles with problems 
in three dimensions, the work of Young et al [2] was used as a basis, which, despite being older, contained 
examples similar to the intended in this paper. Unfortunately, there were no sufficient information for comparisons 
with the methodology here presented, due to the lack of information about the materials used and their strength 
limit, these being the main factors for the non-comparison of results, unlike what was presented in Problem 1. 

Notably, in all of the examples of the cases analyzed, (a) simultaneous loads and (b) independent loads, they 
allowed to demonstrate that the consideration or not of load combinations result in significant differences in the 
final topologies. This indicates that, in the presence of multiple loads, the inclusion of this approach is necessary 
to obtain a structure with the lowest Compliance and that still meets the stress limits for all multiple loads. Future 
works foresee the inclusion of new optimization techniques, other types of large systems of equations solutions to 
make the analysis faster, the inclusion of self-weight, and changing the objective function to minimize the 
maximum stress, instead of Compliance only. 
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