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Abstract. The study of Topological Optimization (TO) in three-dimensional structures with geometrically 

nonlinear formulation is scarce. This work aims to apply TO in elasticity problems extended to consider geometric 

nonlinearity, using the total Lagrangian formulation. To achieve this goal, we developed a numerical model in 

MATLAB, employing the finite element method with hexahedral elements.  The TO method Smooth Evolutionary 

Structural Optimization (SESO) is used in conjunction with the Method of Moving Asymptotes to accelerate the 

optimization procedure, especially in the calculation of sensitivity factors. SESO is based on a bidirectional 

heuristic, systematically removing and adding elements with lower compliance compared to the maximum 

compliance of the structure. The results show that Smooth  Evolutionary Structural Optimization Geometrically 

Non-Linear (SESO-GNL) is robust and efficient in solving classic problems from the literature. 
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1  Introduction 

Topological optimization (TO) is a fundamental approach for the efficient distribution of material within a 

design domain, subject to volume, compliance, and von Mises stress constraints. This paper presents an extension 

of the Smooth Evolutionary Structural Optimization (SESO) method for geometrically nonlinear TO and compares 

the results with nonlinear TO for 3D structures using the SIMP method. It is particularly crucial to recognize the 

importance of geometric nonlinearity in TO design since some kind of structures in engineering are more efficient 

under the assumption of large deformations.  

In geometrically nonlinear TO, excessive distortion in low-density elements can lead to convergence issues 

in Newton-Raphson iterations, affecting the final optimized result, Kemmler et al. (2005). Various methods have 

been proposed to address this distortion, including convergence criterion relaxation, Buhl et al. (2000), removal 

and reintegration of low-density elements, Bruns and Tortorelli (2003), the extremely soft hyperelastic material 

addition method, Luo et al. (2015), element connectivity parameterization, Moon and Yoon (2013), element 

deformation scaling, van Dijk et al. (2014), polyconvex constitutive models, Lahuerta et al. (2013), interpolation 

schemes over elastic energy density, Wang et al. (2014), and super element condensation methods, Hou et al. 

(2020). 
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For two-dimensional structures, the main references are Chen et al. (2018), Zhu et al. (2021) and Han et al. 

(2021). The proposed method can generate slightly non-symmetrical optimized results. In this context, some 

preliminary notions about symmetry in TO were outlined by Rozvany (2010), who also illustrated that optimal 

topologies were non-symmetrical in some cases involving buckling effects. The results presented in this paper are 

slightly non-symmetrical, considering geometric asymmetry, and can be seen as a further development of the 

asymmetry discussed in Buhl et al. (2000) and Rozvany (2010). 

The SIMP method is the most widely used in TO for geometrically nonlinear problems, even though BESO 

exhibits a faster convergence rate. For instance, Werner et al. (2023) apply the BESO method to geometrically 

nonlinear TO in three-dimensional structures, considering random interactions of large forces typical in silicon. 

Zhao et al. (2023) present complete MATLAB codes for geometrically nonlinear three-dimensional TO for 

educational purposes. Two sets of MATLAB codes can be downloaded from the appendices: a 230-line code using 

the SIMP method and a 280-line code using moving morphable bars (MMB). 

This research is relevant for engineers seeking effective methods for TO under large deformation conditions, 

offering insights into the importance of geometric nonlinearity and presenting an extension of the SESO method 

for Geometrically Nonlinear Topological Optimization (GNLTO). The results show that the proposed approach 

can lead to efficient optimized topologies, even when symmetry is not strictly maintained.  

The remainder of the paper is organized as follows: Section 2 presents the 3D Geometric Nonlinearity: Finite 

Element Analysis. Section 3 introduces the formulation of Topology Optimization: Geometric Nonlinear Analysis. 

Section 4 discusses a numerical example, and Section 5 provides the conclusions. 

2  3D Geometric Nonlinearity: Finite Element Analysis   

2.1 Displacement-Strain Conversion Base Matrix: Hexahedral Elements 

Geometric nonlinearity analysis is used to optimize structures that undergo large deformations. Hexahedral 

elements are used to discretize the 3D structural domain. Figure 1a shows the deformed hexahedral elements that 

need to be transformed into undeformed hexahedral elements as shown in Figure 1b.  

 

Figure 1.  Hexahedral Element - (a) Deformed and (b) Undeformed 

For this purpose, the Lagrangian coordinate functions are used to construct the structural deformation, and 

the interpolations for displacements (u) and coordinates are expressed by the isoparametric shape function 𝑁𝑖, 

given by:  

 

 𝑢 = ∑ 𝑁𝑖𝑢𝑖
8
𝑖=0  (1) 

 

                                   𝑥 = ∑ 𝑁𝑖𝑥𝑖
8
𝑖=0                                                                            (2) 

 

where 𝑢𝑖 is the displacement and e 𝑥𝑖 are the nodal coordinates. The strain gradient is defined as 𝐹 = 1 + ∇0𝑢, 
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and the Lagrangian strain 𝐸  is expressed as: 

 

   𝐸 =
1

2
(𝐹𝑇𝐹 − 1)                                                                     (3) 

Thus, considering the second-order tensors 𝐸𝑘𝑙 and 𝑆𝑖𝑗 , which represent the Lagrangian deformation 𝐸 and 

he Piola–Kirchhof stress tensor S, respectively, and the fourth-order tensor 𝐷𝑖𝑗𝑘𝑙, which represents the elastic 

constitutive matrix D: 

𝑆𝑖𝑗 = 𝐷𝑖𝑗𝑘𝑙𝐸𝑘𝑙                                                                           (4) 

 

where D is the constitutive tensor. The Young's modulus E is a function in relation to the density of the element 

𝜌𝑒 expressed by: 

𝐷 = [𝜌𝑚𝑖𝑛 + 𝜌𝑒
𝑝(1 − 𝜌𝑚𝑖𝑛)]𝐷0                                                         (5) 

 

where 𝜌𝑚𝑖𝑛 is normally set to 10−4 to avoid numerical singularity; 𝑝 = 3 is the penalty factor for the SIMP model. 

𝐸0 is the Young's modulus for a given isotropic material. In the SESO method, the design variable is the element. 

Therefore, eq. (5) was replaced by: 

 

𝐸 = [𝛾 + 𝑥𝑒(1 − 𝛾)] ∗ 𝐸0                                                                 (6) 

 

where 𝛾 is given by:  

 

𝛾 =
∑ (

1

1+𝑒−𝛽∗𝑥𝑖
)𝑛

𝑖=1

𝑛
                                                                            (7) 

where 𝛾 performs the same function as 𝜌𝑚𝑖𝑛 in SIMP . In this article is used 𝛽 = 2. 

2.2 Residual of Equilibrium Equation 

When considering geometrically nonlinear finite element analysis in topology optimization, the equilibrium 

state of the structure is given by: 

 

 ∭ 𝑢̅𝑇𝑓𝑏𝑑𝛺
⬚

𝛺0
+ ∭ 𝑢̅𝑇𝑡𝑑𝛤

⬚

𝛤𝑠
= ∭ 𝑆: 𝐸̅𝑑𝛺

⬚

𝛺0
 (8) 

 

where 𝑢̅ is the virtual displacement, 𝑓𝑏  and t are respectively the body and surface forces and  𝐸̅ is the form the 

variational form of the strain. Thus, by mathematically manipulating Eq. (8), the equilibrium for the linear system 

can be expressed as: 

 

𝑅(𝑢) = 𝑓𝑖𝑛𝑡 − 𝑓𝑒𝑥𝑡 = 0                                                                  (9) 

 

where 𝑅(𝑢)   is defined as the residual force vector, 𝑓𝑖𝑛𝑡 is the internal force vector and 𝑓𝑒𝑥𝑡 represents the external 

force vector  

3  Topology Optimization: Geometric Nonlinear Analysis  

3.1 Formulation 

The mathematical formulation for GNLTO with the objective of minimizing compliance subject to volume 

restrictions via SESO is given by: 
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 𝑠. 𝑡.

𝑀𝑖𝑛  𝐶 = (𝑓𝑒𝑥𝑡)𝑇𝑢

{

𝑅 = 𝑓𝑖𝑛𝑡 − 𝑓𝑒𝑥𝑡 = 0

𝑉(𝒙) =  ∑ 𝑥𝑖𝑉𝑖 −  𝑉∗ ≤ 0𝑛
𝑖=1

𝑥𝑖 = 1 𝑜𝑢 𝑥𝑖 = 1𝑒 − 9

                                                      (10) 

 

where C is the compliance (objective function), 𝑉𝑖 is the volume of the element,  𝑉∗ represents the volume fraction. 

𝒙 are the design variables, 𝑥𝑖 = 1 e 𝑥𝑖 = 10−9 are, respectively, the values that represent the solid and empty 

material for the design variables, n is the number of elements, u displacement vector. 

3.2 Sensitivity Number: Considering Geometric Nonlinearity 

Assuming that the design variables do not influence the external load, the sensitivity of the objective function 

in relation to the design variables is given by: 

 

 
𝜕𝐶

𝜕𝑥𝑒
= (𝑓𝑒𝑥𝑡)𝑇 𝜕𝑢

𝜕𝑥𝑒
                                                                               (11) 

 

To determine the sensitivity 
𝜕𝑢

𝜕𝑥𝑒
 the adjoint method is used. In simple terms, this method works by calculating 

an adjoint variable, which is then used to find the gradient of the objective function with respect to the design 

variables. The main advantage of this method is computing the gradient using the adjoint variable is often much 

more computationally efficient than directly calculating the derivatives. 

By introducing a vector of Lagrange multipliers λ and assuming that equilibrium has been reached, the term 

𝜆𝑅 = 0 can be added to the objective function 𝐶 = (𝑓𝑒𝑥𝑡)𝑇𝑢 without altering it. Thus, the modified sensitivity is 

given by: 

 

 
𝜕𝐶

𝜕𝑥𝑒
= (𝑓𝑒𝑥𝑡)𝑇 𝜕𝑢

𝜕𝑥𝑒
+ 𝜆 (

𝜕𝑅

𝜕𝑢𝑒

𝜕𝑢

𝜕𝑥𝑒
+

𝜕𝑅

𝜕𝑥𝑒
)                                               (12) 

 

Mathematically manipulating eq. (12) and using linearization in eq. (8) according to the Newton-Raphson 

(NR) method and neglecting the term 
𝜕𝑢

𝜕𝑥𝑒
 we arrive at:  

 

(𝑓𝑒𝑥𝑡)𝑇 = −𝜆𝐾𝑇                                                                               (13) 

 

where 𝐾𝑇 =
𝜕𝑅

𝜕𝑢
 e 𝐾𝑇 is the global stiffness matrix. 

4  Examples 

In engineering, most structures that need to be optimized for stiffness do not undergo large displacements. 

This is because structures are generally designed to withstand loads within specific limits, and large displacements 

can indicate non-stability or unsafety issues. However, in cases where large displacements are expected, such as 

in structures subjected to plastic deformations or in impact analyses, it is important to consider these effects in 

structural optimization. In such cases, nonlinear analysis methods may be necessary to obtain accurate results. 

Here, we use a material with a Young's modulus 𝐸=3 GPa and a Poisson's ratio assumed to be 𝜈=0.4. The following 

structural engineering examples focus on topology optimization based on minimizing compliance. The geometry 

and boundary conditions for numerical applications are represented in each case. Additionally, all numerical 

examples were processed on a Core i7-2370 notebook, 8th generation, with a 2.8 GHz CPU and 20.0 GB RAM.. 
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4.1 Example 1 – Double-clamped beam 

The design domain and boundary conditions of the double-clamped beam are illustrated in Fig. 2. This 

example is used to validate the MATLAB SESO-GNL code for topology optimization of three-dimensional 

structures. The domain was discretized into a mesh with dimensions  𝐿 = 60, 𝐻 = 20 𝑎𝑛𝑑 𝑊 = 2, totaling 2,400 

hexahedral finite elements, according to Liu et al. (2014). The volume fractions for comparison are 𝑉 =

0.25 𝑎𝑛𝑑 𝑉 = 0.365, and external force of magnitude 𝐹 = 1𝑒6𝑁   was applied to the double-clamped beam. The 

results of both linear and geometrically nonlinear topology optimization using the SESO method with the Method 

of Moving Asymptotes (MMA) optimizer of Svanberg (1987) are shown in Fig. 3a and 3b, and Fig. 3c and 3d, 

respectively and compared with the SIMP proposed by Zhao et al. (2023).   

 

Figure 2. Design domain and boundary conditions of slender beam. 

In Fig. 3e and 3f the optimal topologies using the SIMP method are shown. This example demonstrates the 

effectiveness of the SESO-GNL method for nonlinear geometric analysis. It is worth mentioning that the 

parameters used in MMA for the three analyzes are: asyinit = 0.5, asyincr = 1.2 and asydecr = 0.7. 

 

 

 (a) 𝑉 = 0.250                                                   (b) 𝑉 = 0.365  
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 (c) 𝑉 = 0.250                                                  (d) 𝑉 = 0.365 

 

 (e) 𝑉 = 0.250                                                  (f) 𝑉 = 0.365 

 Figure 3. Optimal topologies: (a and b) linear SESO, (c and d) SESO-GNL and (e and f) SIMP-GNL 

 

5  Conclusions 

This paper proposes the extension of the SESO method for topology optimization procedures subjected to 

large geometrically nonlinear deformations, using structural stiffness as the criterion. The SESO-GNL code 

implemented was proposed in MATLAB and the procedure includes a filtering technique applied to achieve mesh 

independence and stable algorithm convergence, proving to be efficient and effective for geometrically nonlinear 

analysis. Additionally, a sigmoid function was used to determine the optimization parameter aimed at preventing 

singularity in the stiffness matrix. The geometrically nonlinear finite element analysis is derived for 3D structures, 

and the model sensitivities are also derived using the adjoint method. It is concluded from the analyzed example, 

the double clamped beam, that there is symmetry in linear FEA, while the results using geometrically nonlinear 

analysis are slightly asymmetric for the 3D structure. Future work involving more complex loads, such as uncertain 

or multiple loads, should be analyzed. 

Acknowledgements.  

The authors are grateful to the Instituto Federal de Educação Ciência e Tecnologia de Minas Gerais–IFMG-Betim 

and Sao Paulo State Research Foundation (FAPESP) under Grant Number 2023/17511-0 for their financial 

support.  

Authorship statement.  



F. Author, S. Author, T. Author (double-click to edit author field) 

CILAMCE-2024 

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 

 

The authors hereby confirm that they are the sole liable persons responsible for the authorship of this work, and 

that all material that has been herein included as part of the present paper is either the property (and authorship) of 

the authors, or has the permission of the owners to be included here.  

References 

[1] Kemmler R., Lipka A., Ramm E., Large deformations and stability in topology optimization. Struct Multidisc Optim 

30:459–476, 2005.  https://doi.org/10.1007/s00158-005-0534-0 

[2] Buhl T., Pedersen C.B.W., Sigmund O., Stiffness design of geometrically nonlinear structures using topology optimization. 

Struct Multidisc Optim 19:93–104, 2000.  https://doi.org/10.1007/s001580050 089 

[3] Bruns T.E., Tortorelli D.A., An element removal and reintroduction strategy for the topology optimization of structures and 

compliant mechanisms. Int J Numer Methods Eng 57:1413–1430, 2003.  https://doi. org/10.1002/nme.783 

[4] Luo Y., Wang M.Y., Kang Z., Topology optimization of geometrically nonlinear structures based on an additive hyper- 

elasticity technique. Comput Methods Appl Mech Eng 286:422–441, 2015.  https://doi.org/10.1016/j.cma.2014.12.023. 

[5] Moon S.J., Yoon G.H., A newly developed qp-relaxation method for element connectivity parameterization to achieve 

stress-based topology optimization for geometrically nonlinear structures. Comput Methods Appl Mech Eng 265:226–

241,2013. https://doi.org/ 10.1016/j.cma.2013.07.001 

[6] van Dijk N.P, Langelaar M., van Keulen F., Element deformation scaling for robust geometrically nonlinear analyses in 

topology optimization. Struct Multidisc Optim 50:537–560, 2014. https://doi.org/ 10.1007/s00158-014-1145-4 

[7] Lahuerta R.D, Simoes E.T, Campello E.M.B, Pimenta P.M., Silva E.C.N ., Towards the stabilization of the low density 

elements in topology optimization with large deformation. Comput Mech 52:779–797, 2013. https://doi.org/10.1007/s00466-

013-0843-x 

[8] Wang F., Lazarov B.S, Sigmund O, Jensen J.S., Interpolation scheme for fictitious domain techniques and topology 

optimization of finite strain elastic problems. Comput Methods Appl Mech Eng 276:453–472, 2014. 

https://doi.org/10.1016/j.cma.2014.03.021 

[9] Hou J., Gu X., Zhu J., Wang J., Zhang W., Topology optimization of joint load control with geometrical nonlinearity. 

Chinese J Aeronaut 33:372–382, 2020.  https://doi.org/10.1016/j.cja.2019.01.024 

[10] Chen Q., Zhang X., Zhu B., A 213-line topology optimization code for geometrically nonlinear structures. Struct Multidisc 

Optim 59:1863–1879, 2018.  https://doi.org/10.1007/s00158-018-2138-5 

[11] Zhu B., Zhang X., Li H., Liang J., Wang R., Li H., Nishiwaki S., An 89-line code for geometrically nonlinear topology 

optimization written in FreeFEM. Struct Multidisc Optim 63:1015–1027, 2021. https://doi.org/10.1007/s00158-020-02733-x 

[12] Han Y., Xu B., Liu Y., An efficient 137-line MATLAB code for geometrically nonlinear topology optimization using 

bidirectional evolutionary structural optimization method. Struct Multidisc Optim 63:2571–2588, 2021. 

https://doi.org/10.1007/ s00158-020-02816-9 

[13] Rozvany G.I.N.,  On symmetry and non-uniqueness in exact topology optimization. Struct Multidisc Optim 43:297–317, 

2010. https://doi. org/10.1007/s00158-010-0564-0 

[14] Werner, M.; Bieler, S.; Weinberg, K. Topology Optimization with Matlab: Geometrically Non-Linear Optimum Solid 

Structures at Random Force Strengths. Solids, 4, 94–115, 2023. https://doi.org/10.3390/ solids4020007 

[15] Zhao, Y., Guo, G. & Zuo, W. MATLAB implementations for 3D geometrically nonlinear topology optimization: 230-line 

code for SIMP method and 280-line code for MMB method. Struct Multidisc Optim 66, 146, 2023. 

https://doi.org/10.1007/s00158-023-03590-0 

[16] Svanberg K ., The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 

24:359–373, 1987. https://doi.org/10.1002/nme.1620240207   
[17] Liu, K., Tovar, A. An efficient 3D topology optimization code written in Matlab. Struct Multidisc Optim 50, 1175–1196. 

2014. https://doi.org/10.1007/s00158-014-1107-x  
 

 

 

 

 

 

 

 

https://doi.org/10.1007/s00158-005-0534-0
https://doi.org/10.1007/s001580050%20089
https://doi.org/10.1016/j.cma.2014.12.023
https://doi.org/10.1007/s00158-020-02733-x
https://doi.org/10.1007/s00158-023-03590-0

