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Abstract. Fatigue is a common failure mode for mechanical structures under load. While new materials can be 

developed to address fatigue, this approach can be expensive. Alternatively, optimizing the design using 

algorithms to determine the optimized material distribution can enhance fatigue life cost-effectively. This work 

proposes using topology optimization to design structures, aiming to extend their lifespan. The objective is to 

minimize volume while considering fatigue constraints. Existing literature often applies aggregate methods, 

typically used for stress constraints, to manage fatigue. However, conceptualizing fatigue as a localized 

phenomenon by employing the Modified Goodman method, in conjunction with a sensitivity factor for precise life 

estimation, offers a more sophisticated approach. Numerical examples substantiate the effectiveness of this 

methodology. 
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1  Introduction 

Structural optimization is the process of enhancing structural performance by minimizing material usage 

while satisfying established performance and requirements, Olhoff and Taylor [1]. It falls into three main 

categories, Parametric Optimization: Adjusts specific dimensions (e.g., thickness) of the structure. Shape 

Optimization: Seeks the optimal geometric shape of the structure. Topology Optimization (TO): Determines the 

optimized material distribution within a design space, including aspects like material quantity and spatial 

arrangement, Bendsøe and Sigmund [2]. This article is organized asfollows recent research on TO under fatigue 

constraints includes various methodologie. Sherif et al. [3] analyzed loading conditions using equivalent static 

loads. Holmberg et al. [4] proposed a probabilistic approach for fatigue-constrained TO, focusing on critical fatigue 

states. Jeong et al. [5] combined dynamic fatigue constraints with static failure considerations. Lee et al.  [6] 

explored TO for random load fatigue failures in the frequency domain. Collet et al. [7] use SIMP to minimize 

weight while considering flexibility and high-cycle fatigue constraints. They apply the modified Goodman 

criterion and determine mean and alternating stresses using the Sines method, resulting in a topology with infinite 

life. Oest and Lund [8] present an optimization method that integrates fatigue analysis directly into the SIMP-

based process for finite-life constraints. They impose a P-norm damage constraint and use the Sines criterion for 

fatigue damage, calculating accumulated damage with Palmgren-Miner's rule and an S-N curve.  Zhang et al. [9], 

for non-proportional loads. Suresh et al. [10] created a continuous-time approach for diverse load histories. Chen 

et al. [11] focused on cumulative damage and its impact on design. Sherif et al. [3] apply equivalent static loads in 

topological optimization of dynamically loaded structures with fatigue constraints. They use the SIMP method for 

optimization via Tosca® and conduct fatigue analysis with FEMFAT®. Their approach proved effective for both 

theoretical and industrial scenarios. Holmberg et al. [17] explore topological optimization for mass reduction with 

static stress and high-cycle fatigue constraints. They separate fatigue analysis and optimization, using Palmgren-

Miner's rule to convert fatigue constraints into stress constraints, and base sensitivity analysis on maximum 
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principal stress. Jeong et al. [18] introduce a topological optimization method for static and fatigue constraints 

under constant and proportional loads, using SIMP to minimize structural volume. They assess static failures by 

yield stress and fatigue failures using the stress-life method, applying Goodman, Gerber, and Soderberg criteria. 

Nabaki et al. [19] adapt Holmberg et al. [17] method using BESO. They use Goodman’s failure criterion instead 

of accumulated damage for calculating critical fatigue stress in volume minimization. Nabaki et al. [11] present a 

BESO method integrating the modified Goodman failure criterion directly into sensitivity analysis. Their approach 

minimizes flexibility with volume and high-cycle fatigue constraints, considering both flexibility and fatigue 

effects through the gradient of the Goodman criterion. This study proposes an advanced optimization strategy that 

use algorithm to enhance fatigue life while minimizing structural volume.  

This approach emphasizes the design of structures to effectively withstand material fatigue under cyclic 

loading conditions. Integrating fatigue constraints is essential to ensure that the structure can endure repeated stress 

cycles without experiencing critical failures, thereby mitigating the risk of premature failure and enhancing overall 

durability. 

The objective is to minimize volume while addressing fatigue constraints. The Augmented Lagrangian 

method manages constraints by combining them with penalty terms, iteratively updates parameters to achieve a 

feasible and optimized design. This ensures effective volume reduction while meetis fatigue requirements. 

2  Theoretical formulation 

This work considers the assumptions of isotropic material properties, small displacements and strains, linear 

elastic behavior, and plane stress conditions. The field equations of solid mechanics, formulate in their weak form, 

characterize the forward problem associated with the Topology Optimization problem (Zienkiewicz and Taylor 

[13], Bendsøe and Sigmund [2]):  

 

                                                                               𝑎(𝒖, 𝒗) = 𝐿(𝒗)                                                                         (1) 

                                                                                                     

where the Energy bilinear form and Load linear form are defined as: 

                                                                                 

                                                                           𝑎(𝒖, 𝒗) = ∫ 𝜎𝑖𝑗(𝒖)𝜖𝑖𝑗(𝒗)𝑑𝛺
𝛺

                                                       (2) 

  

 

                                                                          𝐿(𝒗) = ∫ 𝑏𝑖𝛺
𝑣𝑖𝑑𝛺 + ∫ 𝑡𝑖𝛤𝑡

𝑣𝑖𝑑𝑠                                                           (3) 

                                  

The variational formulation offers a robust framework for develops numerical methods, such as the Finite Element 

Method (FEM), which are well-suited for solving complex problems involves arbitrary geometries and material 

properties. The 𝑖𝑡ℎ components of the body force and surface force are represents by 𝑏𝑖 and 𝑡𝑖, The 𝑖𝑡ℎ component 

of the virtual displacement vector is represents by 𝑣𝑖: 

                                                                         

                                                                    𝜎𝑖𝑗 =  𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙(𝒖)                                                                        (4) 

 

𝜖𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)                                                                        (5) 

 

the notation 𝐶𝑖𝑗𝑘𝑙  represents the components of the constitutive tensor 𝑪. In this context, 𝜎𝑖𝑗  denotes the 

components of the stress tensor, while 𝜖𝑖𝑗 refers to the components of the linear strain tensor: 

 

                                                               𝑪 =  
𝐸

1+ 𝜈2 [
1 𝜈 0
𝜈 1 0
0 0 1 − 𝜈/2

]                                                                   (6) 

 

In the simulation of isotropic materials, it can be beneficial to utilize the constitutive equation (4) in its matrix 

form, as expresses using Voigt notation, Lai et al. [21]. The constitutive equation can be expressed in the following 

form: 
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                                                                             [

𝜎11

𝜎22

𝜎12

] = 𝑪 [

𝜖11

𝜖22

2𝜖12

]                                                                                    (7) 

 

The material model uses is the well-known SIMP (Solid Isotropic Material with Penalization) method, as 

describes by Bendsøe [14]. In this model, a pseudo-density variable multiplies the constitutive tensor, given by: 

 

                                               𝜎𝑖𝑗 = (𝜌𝑚𝑖𝑛 + (1 − 𝜌𝑚𝑖𝑛)𝜌̂𝑃)𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙(𝒖)                                                         (8)   

 

in the SIMP (Solid Isotropic Material with Penalization) model, the minimum pseudo-density value is 𝜌𝑚𝑖𝑛 , with 

𝜌 ranging from 0 and 1. The physical pseudo-density field is 𝜌, and 𝑃. Penalization 𝑃 is treated as a design variable 

and optimized with pseudo-densities. To address issues such as mesh dependence and checkerboard patterns, 

regularization techniques are applied. This study uses the spatial filter proposed by Andreassen et al. [15] to ensure 

adherence to their mathematical framework.  

The von Mises stress com be computerd as: 

 

                                                                        𝜎𝑣𝑚 = √𝜎𝑖𝑉𝑖𝑗𝜎𝑗                                                                              (9) 

 

Where 𝑉𝑖𝑗  is a auxiliary matrix for computing the von Mises stress, that is: 

 

                                                                  𝑽 = [
1 −0.5 0

−0.5 1 0
0 0 3

]                                                                       (10) 

 

In topological optimization using density-based material interpolation models like SIMP, it utilizes the spatial 

filter from to tackle, mathematical framework, and follows the numerical formulation of Andreassen et al. [15] to 

minimize mesh and checkerboard patterns: 

 

                                                                  𝜌̃ =
1

∑ 𝐻𝑒𝑖𝑖∈𝑁𝑒

∑ 𝐻𝑒𝑖𝜌𝑖∈𝑁𝑒
                                                               (11) 

 

here, 𝜌̃  denotes the 𝑖𝑡ℎ component of the vector of filtered design variables, the index 𝑒 represents the element 𝑒 

of the finite element mesh, and 𝐻𝑒𝑖  is a weight factor defined as follows: 

 

                                                                      𝐻𝑒𝑖 = 𝑚𝑎𝑥(0,  𝑟𝑚𝑖𝑛 − ∆(𝑒, 𝑖))                                                         (12) 

 

The parameter 𝑟𝑚𝑖𝑛 is the radius of the spatial filter, and ∆(𝑒, 𝑖) is the distance between the centers of elements 𝑒 

and 𝑖. The spatial filter affects elements within a neighborhood where ∆(𝑒, 𝑖)is less than 𝑟𝑚𝑖𝑛 . 

To assist the pseudo-densities in attaining values of 0 and 1, which correspond to void and material within 

the domain, we employ the threshold projection method introduce by Xu et al. [20], formulate in the tanh function: 

 

             𝜌̂ =
tanh(𝛽 𝜂)+tanh(𝛽(𝜌̃ − 𝜂))

tanh(𝛽 𝜂)+tanh(𝛽(1− 𝜂))
                                                               (13) 

 

where 𝛽 denotes the filtered projection parameters and 𝜂 represents the inflection parameter. In this context, 𝛽 is 

considered a design variable and is optimized concurrently with 𝜌. 

 

Optimization problem is to minimize total volume while finding an optimized structural configuration that 

satisfies constraints. The mathematical formulation for this problem is: 

 

                                                                   
𝑚𝑖𝑛

 𝜌
         𝐽 =  

∫ 𝜌̂ 𝑑ΩΩ

𝑉
                                                            

                                                                                                                      (14) 

     Such that    𝐹 = 𝑎( 𝒖, 𝒗, 𝜌̂) − 𝐿(𝒗) = 0  

                         𝐺 =  𝐷𝑒 ≤ 1 

                             𝜌𝑚𝑖𝑛 ≤  𝜌 ≤ 1  
  

in this context, 𝐽 represents the objective function, which corresponds to the structural volume. 𝐹 denotes the 

forward problem, which includes the equations of solid mechanics. 𝐺 is the local fatigue damage, and all others 
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are box constraints. The topology optimization problem aims to minimize the structural volume while adheres to 

fatigue constraints:  

 

          
𝑚𝑖𝑛

 𝜌
         𝐿𝑎 =  𝐽 +

𝑟

2
 ⟨

𝜆

𝑟
+  𝐺⟩

2

                                                             

                                                                                                                                      (15) 
     Such that    𝐹 = 𝑎(𝒖, 𝒗, 𝜌̂) − 𝐿(𝒗) = 0  
                           𝜌𝑚𝑖𝑛 ≤  𝜌 ≤ 1  
 

The parameters 𝑟 and 𝜆 represent the penalization factor and the Lagrange multiplier, respectively, the 𝑟 values 

are update after each solution of the external iteration, in accordance with the established methodology. To solve 

the optimization problem, the Augmented Lagrangian method is uses, as describe by Silva, G. A. da et al [16], 

where ⟨[·]⟩ denotes the Macaulay brackets: 

                        

             ⟨[∙]⟩ = {
0,    [∙] < 0
[∙],   [∙] ≥ 0

                                                                                   (16) 

 

the update parameter 𝛾 adjusts the penalization parameter 𝑟 with 𝑟 𝑚𝑎𝑥  representing the maximum allowable value 

for 𝑟. 

 

        𝑟𝑘+1 = 𝑚𝑖𝑛 (𝛾𝑟𝑘 ,  
𝑟 𝑚𝑎𝑥

𝑁𝑒
)                                                                               (17) 

 
the update of the Lagrange multipliers 𝜆 is carries out as follows: 

           

              𝜆𝑘+1 = ⟨𝑟𝐺 + 𝜆𝑘⟩                                                                                      (18) 

 

Cumulative fatigue damage is evaluates using Miner's rule, which sums the damage fractions from individual 

load cycles. Optimization is performs by plots points on the S-N curve using a double logarithmic scale, with the 

horizontal axis represents the number of cycles N and the vertical axis representing the stress amplitude. The 

Basquin equation, as Nabaki [11] describes, models the curve. The allowable number of cycles to failure,  𝑁𝑖 = 

107, calculates for a given stress amplitude: 

 

                  𝜎𝑛𝑓 = 𝜎𝑓(2𝑁𝑖)𝑏𝑓                                                                                  (19)  

  
where the fatigue strength coefficient 𝜎𝑓 and fatigue strength exponent 𝑏𝑓 are material-specific parameters. The 

fatigue limit 𝜎𝑛𝑓, corresponds to the allowable stress amplitude for a specified number of life cycles. The modified 

Goodman criterion is employs to compute the equivalent alternating stress 𝜎𝑎   by considers the minimum stress  

𝜎𝑚𝑖𝑛  and maximum stress 𝜎𝑚𝑎𝑥  the mean stress 𝜎𝑚. Fatigue calculations based on von Mises stresses, as outlines 

by Nabaki [11]. 

 

                                                                         𝜎𝑎 =  
𝜎𝑚𝑎𝑥− 𝜎𝑚𝑖𝑛

2
                                                                           (20) 

                             

                                                                         𝜎𝑚 =  
𝜎𝑚𝑎𝑥+ 𝜎𝑚𝑖𝑛

2
                                                                          (21) 

                                           

                                                                          𝐷𝑒 =  
𝜎𝑎

𝜎𝑛𝑓
+

𝜎𝑚

𝜎𝑢𝑡
                                                                            (22) 

  

here 𝐷𝑒  represents the maximum allowable damage to the structure according to the modified Goodman criterion, 

and 𝜎𝑢𝑡 denotes the ultimate tensile stress. This study utilizes a gradient-based algorithm to tackle the optimization 

problem and computates of sensitivities within the Augmented Lagrangian framework.The open-source FEniCS 

platform, which uses the FEM to solve the problem, employs computations. Sensitivities derive using an automatic 

differentiation algorithm available in Dolfin-adjoint.  

The problem is addresses using the Augmented Lagrangian method implemented within the FEniCS Project 

software framework. Sensitivity analysis is performs with the aid of automatic differentiation techniques provided 

by Dolfin-Adjoint, while the optimization process is executes using the L-BFGS-B algorithm available in the 

SciPy library. The optimization workflow is depicts in Fig. 1. 
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Figure 1. Topology optimization flowchart 

3  Results 

The L-bracket represented in Fig. 2, this configuration represents a prevalent example in topology 

optimization problems with fatigue constraints and stress constraints, largely due to the stress concentration 

observed at the corner of the L-beam. Topology optimization employs to minimize the volume while satisfying a 

fatigue constraint. The selected failure criterion must remain below 1. Material properties Young’s modulos 𝐸 = 

210 GPa and Poisson’s ratio 𝜈  = 0.28, number of cycles to failure,  𝑁𝑖 = 107, 𝜎𝑓 = 593 MPa, 𝑏𝑓 =  -0.086, 𝜎𝑢𝑡 = 

358 MPa. Within the domain, two loads varying between -100 N and 100 N apply to four elements at the tip of 

the L-bracket, as indicated by the arrows in the Fig.  2. The domain was discretizes using a mesh consisting of 24 

000 square elements with unit side lengths. 

 

 

 
Figure 2. L-bracket domain 

 



Topology Optimization for Local Fatigue Constraints: A Solution Using the Augmented Lagrangian Method 

CILAMCE-2024 

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 

 

 

Fatigue analysis undertakes to determine the critical stress levels that could induce fatigue failure. This 

analysis, applied to the structure undergoing TO, depicted in Fig. 3, which shows the reduction in volume objective 

function corresponding to the and the associated stress relief. Furthermore, Fig. 4 displays the distribution of the 

fatigue constraints throughout the optimized domain. 

 

                     
         Figure 3.  𝜌  Physical Field                                             Figure 4. Fatigue Constraint Field 

4  Conclusions 

The optimization problem used a local fatigue constraint within the Augmented Lagrange framework to 

ensure adherence to the constraint. Additionally, a topology optimization approach was employed to optimize the 

volume while accounting for fatigue constraints. The employed procedure demonstrated its efficacy in producing 

fatigue-resistant geometries. However, it is essential to emphasize that additional criteria should be evaluated, and 

further adjustments are necessary to achieve improved outcomes. The incorporation of the penalty as a design 

variable field in the Modified Goodman method was proposed, demonstrating its efficacy in achieving the 

anticipated optimization within the projected number of material cycles. 
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