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Abstract. In the practice of civil construction, one of the structural alternatives used so that beams can withstand
the required loads in a more efficient and economical way are the prestressed composite beams, especially steel
and reinforced concrete. Posttensioned composite steel-concrete beams (PSCCB) have a greater range of elastic
behavior, as well as yield and ultimate load values. In continuous beams, there is a reduction of cracking in the
hogging moment region. They may also have better fatigue performance and employ lighter steel sections. The
present paper aims to create a large database for the analysis of PSCCB, based on a previously developed nonlinear
finite element model, which performs static non-linear analysis of PSCCB’s, considering the partial interaction
between steel and concrete. With a database developed from a variation of the parameters in the numerical models,
three Machine Learning models are developed and trained with the objective of predicting the beam ultimate load,
deflection, and final tendon force. The implemented procedures is compared, whenever possible, with experimental
and numerical results available in classic literature, mainly as a reference of test data to evaluate the success of
Machine Learning algorithms.
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1 Introduction

The advantages of steel and concrete composite beams over conventional concrete structures include reduced
dead weight, increased span length with smaller deformations, and greater efficiency and precision of execution [1].
On the other hand, analyses of this type of structure are more complex, since the individual characteristics of each
constituent material and the interaction between them are taken into account. In addition, it is necessary to consider
a partial interaction between the concrete slab and the metal profile, which causes longitudinal displacements
between the materials [2].

Some works studied the contribution of external prestressing cables to further increase the load capacity of
the structural system. Saadatmanesh et al. [3] mentions that the main advantages of using external prestressing are:
smaller deformations in service, control of cracks in regions of negative moment, greater load-carrying capacity,
improvement in elastic behavior, better fatigue resistance, savings in the total construction value as well as reduc-
tion in the weight of the beam element. In the parametric study by Almeida et al. [4], it was found that increasing
the initial prestressing force has no significant effect on the overall behavior and that the influence of the length of
the prestressing cable was significant. Regarding the span size of PSCCB’s, longer beams need a higher prestress-
ing setting than shorter beams to achieve the same improvement in overall behavior and high ultimate moment
resistance. Sousa Jr. et al. [2] developed a 10-dof finite element for nonlinear analysis of PSCCB’s by external
tendons. They show the influence of considering partial interaction for the correct simulation of the prestressed
composite beam both in terms of stiffness and ultimate strength and the importance of the nonlinear geometric
effects of the tendon in the distribution of moments and deformations along the beam.

Most of the studies available in the literature that analyze the structural behavior of PSCCB’s with partial
interaction focus on experimental analyses and/or the implementation of finite elements for numerical analysis of
structural behavior [3, 5–9]. Despite the effectiveness of these numerical models in representing the physical and
geometric nonlinear behavior of composite beams when compared with experimental results, the time cost and
complexity of implementing these elements has made it difficult for these studies to be more widely disseminated
for use by anyone interested in the behavior, analysis, and design of PSCCB’s.

The use of Machine Learning (ML) algorithms in structural engineering has been growing steadily in recent
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years. ML is the most successful branch of artificial intelligence (AI) in current technology, with applications
in diverse areas of study. This computational tool works based on algorithms that teach the ”machine” to make
predictions and estimates of a given objective based on training on a set of available data. In structural engineering,
ML has been employed in several areas [10], but there is still a large field within structural engineering that
has not yet been explored by ML algorithms due to the lack of training data. ML models to predict deflections
of composite beams, most commonly those developed by neural network algorithms, have been successful in
predicting the behavior of composite structures. A line of work using neural networks to predict deflections in
composite bridges considering partial interaction between the components was developed and when compared to
finite element analyses, it had a relatively lower computational cost [11, 12]. Sakr and Sakla [13] built a large
database varying different design parameters of the composite beam with the aim of training and verifying the two
neural network models. However, no studies of prestressed composite beams using machine learning algorithms
have yet been found.

Therefore, this work aims to generate a database on the structural behavior of prestressed composite beams
with partial interaction from the numerical model for nonlinear analysis of prestressed composite beams developed
by authors who are partners in the research line in a FE program [2, 14, 15]. From this database, different ML
methods will be developed and trained in order to predict some important responses of PSCCB’s in nonlinear
analysis.

Structural responses, such as the failure load, the maximum vertical displacement of the beam when it reaches
the failure load and the final tendon force will be estimated. Finally, the developed ML methods are validated by
evaluating their performance when real data from analyses of PSCCB’s with partial interaction are used as test data
for the models.

2 Machine Learning Algorithms

Machine Learning (ML) is a multidisciplinary computational tool that consists of teaching a ”machine” to
predict the correct answer that one wants to obtain from an initial database. This initial database, also called
instances, is divided into features, which are the attributes that represent instances, and labels, which consist of the
target value. When an ML model presents adequate features of the initial data and a good algorithm performance,
it can generalize a response from examples that are not in the initial database. The initial data is separated into
test and training data. Initially, the algorithm uses the test data to teach the model and the test data is later used
to evaluate the model’s performance. Three main steps are necessary to build a good ML model: choosing and
processing the initial data, training the data, and finally evaluating the model.

In this paper, some ML algorithms that use the predictive regression technique will be used in order to
compare the performance of each one and obtain a model that results in reliable structural behavior of prestressed
composite beams with a lower computational processing cost. The next sections present the algorithms that will
be used in this paper.

2.1 Linear Regression

Linear regression is one of the simplest supervised learning models, which consists of estimating the values
of the parameters/coefficients so that the model has a good fit to the data. The intercept (b) and the weights
(w = (w0, w1, ..., wn)) are estimated to result in a predicted value (y):

y = b+ w0x0 + w1x1 + ...+ wnxn (1)

where x = (x0, x1, ..., xn) are the features of the model.
There are different methods for estimating intercept and weight values from training data, depending on dif-

ferent adjustment criteria, objectives, and different ways of controlling model complexity. The learning algorithm
tends to find the best parameters that optimize an objective function, usually by minimizing a function (loss func-
tion) between the estimated values and the real values. Two linear regression methods will be discussed in this
section: Ridge and Lasso Regression. Lasso regression (LR) is used when there is a high correlation between the
model’s input variables and when few parameters have a very high relevance, while Ridge regression (RR) is used
when many parameters have medium or low relevance. RR finds w and b that minimize the sum of the quadratic
differences between the real values and those estimated using the mean square error (MSE), but adds a penalty
(α) to increase the variation of the weight values. The hyperparameter α controls the regularization of the model.
Ridge regularization uses L2 regularization (squared value of the weight), which minimizes the sum of the squares
of w to eliminate the weights of the least influential features. Regularization is a penalty given to the parameters
and prevents overfitting by restricting the model, usually reducing its complexity. In the case of RR, increasing
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α simplifies the model. LR uses regularization of L1 (absolute weight value) for training, in which the weights
relative to the least influential variables tend to 0, generating a model that selects the features of greatest relevance
to predict the target value.

2.2 Support Vector Machine

Support Vector Machine (SVM) algorithms were first used to solve classification problems, but were later
developed for regression problems, support vector regression (SVR) [16]. The SVR algorithm finds a function that
best fits the data points within a decision boundary using linear regression. The best-fit line is the hyperplane that
has the maximum number of data points within a threshold value ε. Since in real-world the data are not linearly
separable, it is impossible to find a separating hyperplane. In this case, SVR algorithm has procedures for using
a penalty parameter to control the trade-off between maximizing the hyperplane margins and minimizing the total
slack distance ξ when the data point is on the wrong side of the margin. Then, kernel functions are used to map
the original data that does not follow a linear plane into a new space where the data is grouped linearly. The most
commonly used kernel functions are linear and non-linear polynomials, RBF, and sigmoid function. Both kernel
functions and penalty parameters have significant effects on the performance of SVR models.

2.3 Decision Tree

Decision Tree (DT) is a popular and easy to use and understand method for Regression and Classification. It
is an exploratory method that helps to understand how variables influence the model and is based on operations
by control structures, such as ”if/else”, in its algorithm. The complexity of the model is controlled by the tree
maximum depth. The DT has four elements: a root node, two or more branches, decision nodes and leaf nodes
(terminal). The root node is the highest decision node in a tree that represents the final objective. The leaf node
located at the end of the branch indicates a final decision to be made, while the decision node represents a condition
that causes a data set to be split. The split condition can be based on different metrics, such as Gini index, entropy,
information gain and MSE (regression problem). The division process is repeated on each derived subset until
a division is found that reduces the metrics used or reaches the maximum depth of the tree, which is defined by
the person who starts the algorithm. The greater the depth, the greater the possibility of overfit and the higher the
computational cost.

2.4 Neural Network (Perceptron)

A Perceptron is a mathematical model for supervised learning, a single-layer neural network that takes multi-
ple inputs and produces a single binary output. For more complex problems, it is necessary to introduce a network
with hidden layers. A hidden layer allows the network to reorganize the input data. The multilayer perceptron
algorithm can have different numbers of hidden layers. Without hidden layers, it is only capable of representing
linear functions. With 1 hidden layer, it can approximate any function that is a continuous mapping from one finite
space to another. With 2 hidden layers, it can represent non-continuous functions and arbitrary decision lines.
The increase in the number of neurons/layers implies an increase in the complexity of the algorithm. As in linear
regression models (ridge and lasso), regularization can be used to make the model have more weights close to 0.
The parameter α is used for this purpose; a higher value of α implies greater regularization. The MLP regression
algorithm presents different activation functions so that the data from the hidden layer are transformed into the
output layer.

3 Results and discussion

Data acquisition will be done using the finite element program for nonlinear analysis of prestressed composite
beams with partial interaction, developed by authors who are companions to the research line program [2, 14, 15].
The input parameters for analysis, also called attributes or features, will be varied to generate a diversified database.
Two CP 190 RB prestressing tendons were considered with initial prestressing force applied to the tendon set at
10 tf and 15 tf for 12.7 mm and 15.7 mm tendons, respectively. The parameters, as well as the criteria for their
variation, are listed below. Regarding the varied parameters that describe the geometry of the model, Figure 1
presents an illustration of a composite beam identifying each variable described below:

• L (mm) - Beam span: Between 15 and 40 times the height of the steel profile (Hs);
• Fcm (MPa) - Compressive strength of concrete: Between 20 and 50 MPa;
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• Ec (GPa) - Modulus of elasticity of concrete: Ec = 5600
√
fcm

• Hc (mm) - Height of the concrete section: Between 80 and 250 mm [13];
• Bc (mm) - Width of the concrete section: Between half the height of the steel section (Hs/2) and 25% of the

beam span [13];
• Ac (mm²) - Area of the concrete section;
• Hs (mm) - Height of the steel profile: Between 200 and 600 mm according to the Gerdau catalog [17];
• W (mm) - Width of the steel profile flange: limits of the Gerdau catalog [17];
• Tw (mm) - Thickness of the steel profile web: limits from the Gerdau catalog [17];
• Tf (mm) - Thickness of the steel profile flange: limits from the Gerdau catalog [17];
• Dp (mm) - Diameter of the prestressing cable: 12.7, 15.7 mm according to the Belgo Bakaert Arames catalog

[18];
• Fp (tf) - 10 tf for 12.7 mm prestressing cables and 15tf for 15.7 mm cables
• LocAsp (mm) - Location of the prestressing cable: Half the distance of the height of the steel profile ± 50;
• Scon - Longitudinal spacing between connectors: Between 6 times the cable diameter, minimum spacing

between connectors ([19]), and the height of the concrete section (Hc).

Figure 1. Illustration of a composite beam identifying parameters of the geometry to be varied.

From these features, a considerable number of different instances will be generated from random numbers
using a Latin Hypercube Sampling function, respecting the parameter limit criteria. Each group of attributes of
each instance will be simulated in the finite element program to generate the results, target values: FatCarg (N) -
Load factor at rupture; Deslocmax (m) - Maximum vertical displacement at the moment of rupture; FCabo (N) -
Force acting on the prestressing tendon at the end of the analysis.

3.1 Pre-processing of the database

The results were evaluated and those that did not converge were excluded, thus obtaining a database with 110
models. In Python, all the pre-processing of these data was carried out to perform the statistical study, treatment,
normalization and cleaning. Table 1 presents all the responses considered important from the descriptive statistics
of the generated database. Figure 2 presents a table showing the correlation between all the variables in the
database, with a darker shade of blue indicating a greater parameter correlation, that is, a greater association
between the parameters studied.

3.2 Training and performance of machine learning models

In this section, training, testing and evaluation of the different models are carried out so that the models with
the best performance can be selected and, subsequently, validated with the data available in the literature. Five
machine learning methods are developed: RR, LR, Support Vector Machine (SVM), Decision Tree and Neural
Networks. First, for each model, the data will be separated between training and testing so that training can be
carried out. This step will be carried out both by performing a simple training-test separation (using train test split)
and by cross-validation (cross val score), which allows extracting data from the same underlying distribution for
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Maceió, Alagoas, November 11-14, 2024



B.M. Meneses, J.B.M. Sousa Jr.

Table 1. Statistical study of database.

Parameter Mean Stand. Deviation Min. Value Max. Value 25% 50% 75%
L (mm) 16553.07 5137.99 4572.00 24963.95 12556.17 17218.60 20426.79

Hc (mm) 171.47 48.77 76.00 249.71 128.55 177.72 214.24
Bc (mm) 836.44 441.83 135.18 1869.41 473.67 822.15 1089.06
Hs (mm) 442.55 110.49 204.11 609.09 355.31 455.74 541.37
W (mm) 219.9 61.60 101.91 322.96 169.77 225.28 271.80
tw (mm) 8.84 2.69 4.38 13.88 6.65 8.73 11.09
tw (mm) 13.4 4.72 5.01 21.59 9.91 13.57 17.24
Dp (mm) 13.91 1.49 12.70 16.00 12.70 12.70 15.70

Fp (tf) 11.89 2.41 9.00 15.00 10.00 10.00 15.00
LocAsp (mm) -395.71 236.57 -931.05 46.00 -555.58 -381.41 -210.07

Scon (mm) 140.44 38.58 95.00 236.12 105.45 131.55 169.74
FatCarg (kN) 436.61 184.52 79.79 1023.09 288.34 434.57 560.06

Deslocmax (m) -0.37 0.157 -0.69 -0.052 -0.48 -0.39 -0.25
FCabo (kN) 206.56 66.31 70.57 348.85 163.93 208.01 228.77

Figure 2. Correlation between features and labels.

training and evaluation by performing multiple training-test separations. This prevents the model from appearing to
perform well only in a simple random training-test separation and the rest of the data from being unrepresentative.
For this purpose, the tool GridSearchCV was used, which, in addition to performing cross-validation, automates
the process of adjusting the parameters of an algorithm, making various combinations of parameters and indicating
which model performed best.

In this development, the following parameters were tested for each ML algorithm evaluated, so that the model
with the best performance can be selected.

• Ridge Linear Regression - Tested hyperparameters: 0.1, 1, 10, 50, 100, 200, 500, 1000, 10000, 500000.
• Lasso Linear Regression - Tested hyperparameters: 0.1, 1, 10, 50, 100, 200, 500, 1000, 10000, 500000.
• SVM Linear Regression - Tested kernels: linear, poly and rbf; Tested hyperparameters: 0.0001, 0.01, 0.1, 1,

10, 50.
• Decision tree - maximum depths tested: 3, 5, 6, 7, 8, 9, 10.
• Perceptron Neural Network - Activation functions tested: logistic, tanh and relu; Tested hyperparameters:

0.001, 0.01, 1, 10;
Table 2 presents the evaluation metrics for predicting the Load Factor. The model with the best performance

was the neural network with R²=0.86, using the logistic function and the hyperparameter alpha=10. The method
with the worst performance was the decision tree with R²=0.28. Table 3 presents the evaluation metrics for predict-
ing Maximum Displacement. The model with the best performance was the Ridge linear regression with R²=0.92,
using the hyperparameter alpha=1. The method with the worst performance was the Lasso linear regression with
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R²=0.37. Table 4 presents the evaluation metrics for predicting the final tendon force. The model with the best
performance was the Lasso linear regression with R²=0.93, using the hyperparameter alpha=0.1. The method with
the worst performance was the SVM with R²=0.04.

Table 2. Performance of Load factor model

Model Best train score (R²) Best test score (R²) Best param. GRID Best Grid score (R²)

Ridge 0,89 0,80 alfa=1 0,85

Lasso 0,89 0,79 alfa=1 0,85

SVM 0,88 0,85 C=50; Kernel = linear 0,85

Decision Tree 0,73 0,02 max depth=3 0,28

MLP 0,99 0,92 function=logistic; alfa=10 0,86

Table 3. Performance of Maximum displacement model

Model Best train score (R²) Best test score (R²) Best param. GRID Best Grid score (R²)

Ridge 0,95 0,82 alfa=1 0,92

Lasso 0,41 0,39 alfa=0.1 0,37

SVM 0,84 0,71 C=0.1; Kernel = linear 0,79

Decision Tree 0,99 0,82 max depth=6 0,83

MLP 0,97 0,78 function=tanh; alfa=0.01 0,91

Table 4. Performance of final tendon force model

Model Best train score (R²) Best test score (R²) Best param. GRID Best Grid score (R²)

Ridge 0,95 0,76 alfa=0.1 0,92

Lasso 0,95 0,63 alfa=0.1 0,93

SVM 0,12 0,12 C=50; Kernel = linear 0,04

Árvore de decisão 0,99 0,80 max depth=10 0,89

MLP 0,99 0,79 function=relu; alfa=10 0,75

The method with the highest computational cost while training the model was the neural network method
(MLP). Interestingly, of the three models, MLP has a best perform only for load factor prediction. For maximum
displacement, the method performed as well as Ridge regression, and for cable force prediction, the method had
a high computational cost for the penultimate worst evaluation metric (R²=0.75). This shows that in this study, it
is inefficient to select the neural network model for evaluation, since it has a high computational cost compared to
the other methods that also perform well.

4 Conclusions

This work contributes to the development of a database for the analysis of prestressed steel and concrete
composite beams considering partial interaction based on a finite element model already developed by partner
researchers and validated as a reliable and robust option for the analysis of composite beams.

From the varied database considering different parameters of beam geometry, prestressing and degree of
iteration at the interface, the relevance and correlation of these parameters in relation to some structural responses
such as load factor at rupture, maximum beam slip at the moment of rupture and final force in the prestressing cable
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at the end of the analysis were shown. With the database and the target values, 5 machine learning models were
trained, obtaining good performance scores. In the end, it was possible to evaluate that the Ridge linear regression
method had better efficiency, presenting on average an R²=0.8 and a lower computational cost when compared to
the trained neural network model.

The work had a limitation due to numerical convergence failures in the generation of a database when varying
the prestressing force. As a contribution to future works, we suggest to develop a database varying the prestress-
ing force in the cable so that it is possible to predict structural responses using different prestressing cables and
prestressing degrees better assist the designs of composite-prestressed beams considering partial iteration.
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