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Abstract. The present work aims at the implementation and validation of a displacement-based two-dimensional
numerical formulation including several sources of non-linearities in steel-concrete composite frames, such as
second-order effects, plasticity and beam-to-column semi-rigid connections. The co-rotational based approach is
used to describe the finite element formulation, allowing large displacements and rotations in the numerical model.
Two rotational pseudo-springs in series are positioned at the finite element ends. One of them is used to include
the gradual loss of stiffness determined by the cross-sectional plastification, where the axial and flexural stiffnesses
are homogenized for improve accuracy in capturing the interaction between bending moments and axial forces.
The limiting of the uncracked, elastic, and plastic regimes is defined in the axial force-bending moment diagram.
In the cross-sectional analysis, the Strain Compatibility Method (SCM) and the Refined Plastic Hinge Method
(RPHM) are used to capture the axial strains in the section components. In this way, the uniaxial constitutive
models of the materials are described by continuous functions. The cracked effect is considered by the effective
moment of inertia of the concrete cross-section. The other spring includes the effects of the semi-rigid beam-
to-column connections through the moment-rotation relationship. A three-parameter power model for beam-to-
column connections is used. To validate the proposed numerical formulation, the results obtained are compared
with numerical and experimental data available in the literature. These comparisons indicated validation of the
numerical procedure proposed and implemented here, highlighting the precision of the formulation in both pre-
and post-critical structural behavior.

Keywords: Numerical formulation, Advanced Analysis, Steel-concrete composite frames, Co-rotational approach
and Finite element method

1 Introduction

There are three basic pillars for the development of a structural project: safety, time (both in design and
execution), and cost-efficiency. The optimization of these three variables is primarily related to the materials
and methods of analysis used. In civil construction, when it comes to material selection, Lemes [1] and Caldas
[2] highlighted that steel and concrete are the most common, as their combination allows for better physical and
mechanical utilization of their properties.

The main advantages of steel-concrete composite structures are increased strength and rigidity, protection of
steel elements (from fire and corrosion), and cost benefits. Lemes [1] added that this type of structural system
also has execution advantages, as steel profiles can support concrete elements during the concrete curing process.
This condition reduces costs associated with formwork and increases free space for material circulation on the
construction site.

However, Lemes [1] warned that this type of structural system presents various forms of instability. In the
pursuit of optimizing its behavior, advanced computational analysis stands out, as it allows for the development
of numerical processes that can solve problems that would be unfeasible with traditional analytical methods and
simplified design standards. The combination of steel and concrete has also become a viable solution for the
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rehabilitation of old structures, as evidenced by de Oliveira [3], offering an economical and sustainable alternative.
In this context, a crucial element to be investigated is the connections between beams and columns, especially

considering their semi-rigid conditions. Lemes [1] explained that, in numerical analysis, semi-rigid beam-to-
column connections are typically represented using spring elements at the joints. Lemes [1] cited this approach
for capturing the flexural behavior of the connection. Weng and Yen [4] demonstrated that composite structures
can closely or distantly resemble real structural behavior depending on different analysis forms in various design
standards. The ongoing search for more accurate formulations and faster solution methodologies remains essential
in structural engineering practice.

2 Methodology
In this study, a formulation based on the Refined Plastic Hinge Method (RPHM) with a co-rotational approach

was applied. This methodology assesses all previously discussed effects. It uses a hybrid finite element of length
L. Two series pseudo-springs with zero length are used at each end of the element. The outer springs are associated
with the flexibility of the connection with rotational stiffness Sc, where the moment-rotation relationship describes
the beam-to-column joint behavior. The inner springs are linked to the material’s inelastic behavior, represented
by Ss, which considers the effects from the onset of yielding to full yield. Notably, although the element is used
throughout the discretization, only at the nodes where the beam and column are connected are the effects on the
Sc parameter considered.

Referencing this element to the local system through the co-rotational approach, the actual displacements are
the rotations at nodes i and j (θci, θcj) and the axial displacement δ. The corresponding forces are Mci, Mcj , and
N . The deformed configuration of the hybrid element is shown in Figure 1.

Figure 1. Deformed hybrid finite element [5]

Chen et al. [6] noted that for most steel structures, axial and shear forces have minimal effects on joint
deformation compared to bending moments. In a two-dimensional analysis, torsion is also neglected, meaning
semi-rigid joints are simulated considering only flexural rotation.

Starting from the deformed finite element, each pseudo-spring is governed by kinematic, equilibrium, and
uniaxial constitutive relations, respectively ϕc = θc − θb, Mc +Mb = 0 and Mc = Scϕc. Where ϕc is the relative
rotation of the spring given by the difference between the connection angle θc and the beam-to-column rotation θb
[7]; Sc is the connection stiffness derived from the M × ϕ relationship; Mc and Mb are the moments in the spring
and beam-to-column elements, respectively.

The combining with the beam-to-column element parameters, and noting that the incremental internal mo-
ments ∆Msi and ∆Msj are zero (as loads are applied at global external nodes), the following moment-rotation
relationship is obtained:

∆Mci

∆Mbi

∆Mbj

∆Mcj


=


Ssci −Ssci 0 0

−Ssci k(2,2) + Ssci k(3,2) 0

0 k(2,3) k(3,3) + Sscj −Sscj

0 0 −Sscj Sscj





∆θci

∆θbi

∆θbj

∆θcj


(1)
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where Scsi and Scsj are parameters evaluating the combined effects of semi-rigidity and steel inelasticity at the
nodal points i and j of the hybrid element, respectively. These parameters represent the equivalent stiffness of the
spring elements and are defined as [5]:

Ssci =
SciSsi

Sci + Ssi
and Sscj =

ScjSsj

Scj + Ssj
(2)

Thus, Sc can be determined using one of the mathematical models representing the moment-rotation behavior
as demonstrated in Section 2.1, and the cross-section resistance parameter Ss can be calculated according to Fong
and Chan [8] by the following equation:

Ss =
EaIhom

L

(
Mpr −M

M −Mer

)
(3)

where L is the length of the finite element, Ea is the steel’s modulus of elasticity, and Ihom represents the homoge-
nized moment of inertia of the composite section evaluated at nodes i and j. The process of section homogenization
to obtain Ihom is discussed and demonstrated by Lemes [1] and presented later in this paper.

Silva [5] and Lemes [1] explain that for an elastic section, the spring stiffness is infinite, allowing full moment
transfer from one side of the spring element to the other, with Ss numerically defined as Ss = 1010. When the
moment is below the yield moment Mer, the section remains elastic with virtually infinite spring stiffness. As the
acting moment reaches the yield moment, there is a progressive reduction in section stiffness. With section yield,
Ss reduces to zero, numerically defined as Ss = 10−10, effectively nullifying the spring stiffness and simulating
the formation of a plastic hinge when the moment reaches the plastic moment Mpr, indicating the nullification of
spring stiffness and absence of moment transfer.

The presented formulation considers material nonlinearity exclusively at the finite element nodes, meaning
the element remains linearly elastic along its length. According to Lemes [1], for situations where the material in
a prismatic element behaves elastically, the system’s strain energy (U ) can be written as:

U =
EA

2

∫ L

0

ε2dx+
EI

2

∫ L

0

Φ2dx (4)

where L is the element length, EA and EI are the axial and flexural stiffnesses of the cross-section, and ε (axial)
and Φ (curvature) are the associated strains. Based on Euler-Bernoulli theory, the degenerate form of Green’s strain
and curvature can be expressed as [9]:

ε =
du

dx
+

1

2

(
dv

dx

)2

and Φ = −d2v

dx2
(5)

where u and v are the axial and vertical displacements of the element. Interpolation functions are applied to
describe these displacements, with cubic Hermite polynomials used for vertical displacements and the equation
defined by Tang et al. [10] for axial displacements. Thus:

v = x
(
1− x

L

)2

θi +
x2

L

( x

L
− 1

)
θj (6)

u =
x

L
δ +

x

L

∫ L

0

1

2

(
dv

dx

)2

dx−
∫ x

0

1

2

(
dv

dx

)2

dx (7)

Stiffness matrix terms are defined by the second variation of strain energy or the first derivative of the internal
force vector as follows:

Kl =
∂2U

∂u2
l

=
∂fl
∂ul

(8)

Appropriately refined meshes are used to account for yield effects exclusively at the finite element nodes
(plastic hinge approach) [1], implying only nodal loads simulate external forces, leading to a linear variation of
bending moments along the elements’ length [11]. The moment of inertia, considering cracking, is determined by
the following equation [1]:

Ihom (x) =
(
1− x

L

)
Ihom,i +

x

L
Ihom,j (9)

where L is the element length and Ihom is the homogenized moment of inertia of the composite section evaluated
at nodes i and j, as defined by:
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Ihom = Ia +
Er

Ea
Ir +

Ec

Ea
Ief (10)

where Ia is the moment of inertia of the steel, Er is the modulus of elasticity of the reinforcement, and Ec is the
modulus of elasticity of the concrete, as calculated according to Lemes [1]. The term Ir represents the moment
of inertia of the reinforcement, while Ief denotes the effective moment of inertia of the concrete section, which
accounts for the cracked region of the concrete.

Using the second derivatives of the functions (terms of the vector N [1]) consistent with the cubic Hermite
polynomials in Equation 6, the bending stiffness matrix terms are determined by:

k∗
l =

∫ L

0

NT Ihom (x)Ndx (11)

Considering all degrees of freedom, the beam-to-column element stiffness matrix is calculated as follows:

kl,22 =
Ea (3Ihom,i + Ihom,j)

L
+

2NL

15
(12)

kl,23 = kl,32 =
Ea (Ihom,i + Ihom,j)

L
− NL

30
(13)

kl,33 =
Ea (Ihom,i + 3Ihom,j)

L
+

2NL

15
(14)

where N is the internal axial force and Ea is the steel’s elasticity modulus. Axial stiffnesses are determined by
averaging the nodal responses [1], and terms of this matrix are referenced as kle,mn, where le denotes the beam
column element and m and n indicate the positions of the terms (row and column of kle, respectively).

The parameter (kl,11) considers the axial degree of freedom of the element via the homogenized cross-section
(Ahom) and is expressed as:

kl,11 =
EaAhom

L
(15)

The additional terms kle,22, kle,23, kle,32, and kle,33 carry more weight than the higher-order terms derived
by Yang and Kuo [12]. Previous studies [1, 13] indicate that the precision of numerical simplification does not
affect the system’s overall response, even in highly nonlinear problems.

2.1 Three-Parameter Power Model

Beam-to-column connections are crucial for structural integrity, as they transfer loads and impact the system’s
capacity. Accurate performance is vital for resisting gravitational and lateral forces. Several authors have proposed
models to simulate these connections, including the three-parameter power model (3PP) by [14]. This model is
valued for its simplicity, requiring only three parameters: initial stiffness (Sc,ini), final moment capacity (Mu), and
a shape parameter (n). The moment-rotation relationship is given by:

M =
Sc,iniϕc[

1 +
(

Sc,iniϕc

Mu

)n]1/n (16)

where Sc,ini is the initial stiffness, Mu is the final bending moment capacity, and n defines the curve’s shape.

3 Numerical Results

The present section analyzes two semi-rigid one-story frames, as proposed and simulated by Bui and Kim
[15] and Bui et al. [14] using their own formulations and the software ABAQUS [16]. One frame has columns with
a circular cross-section [15], while the other has columns with a rectangular cross-section [14]. Both structures
are composed of HEA200 steel I-section beams, with columns filled with concrete in steel tubes. As illustrated
in Figure 2(a), two incremental vertical loads P = 2800 kN are applied to the top ends of the columns, and an
incremental lateral load (H = 35 kN) is applied to the top of the left column. The figure also shows the dimensions,
which are identical for both frames, with an effective span length of 3.0 m and an effective column height of 2.905
m.
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(a) Dimensions (b) Finite element discretization

Figure 2. Simple frames with composite columns and steel beam

Figure 3 shows the detailed cross-sections of the circular and retangular columns filled with concrete. In both
structures, the steel tubes have the following properties: modulus of elasticity (Es) = 200 GPa, yield strength (fy)
of 250 MPa, and ultimate strength (fu) of 400 MPa. Additionally, the compressive strength (fc) of the concrete
cores was considered to be 38 MPa.

(a) Columns with circular section (b) Columns with rectangular section

Figure 3. Cross-sections [14, 15]

The authors make it clear that the structure was subjected to simulations with semi-rigid beam-to-column
connections. For the pinned connections, the semi-rigid connection model was adapted with substantially reduced
spring stiffness values, as proposed in the study. The parameters for the beam-to-column connection element
models were selected as follows: for the semi-rigid connections, values of n = 0.98, Rki = 31.635 kN m/rad, and
Mu = 142 kNm were used; for the pinned connections, values of n = 0.9, Rki = 1 × 10−15 kNm m/rad, and
Mu = 1 × 10−15 kNm were adopted. It is important to note that to simulate the semi-rigid connections, Bui and
Kim [15], Bui et al. [14], and the present work used the three-parameter model (3PP), demonstrated in Section 2.1.

The equilibrium paths of the simple frame with concrete-filled rectangular columns and steel beams are
detailed in Figure 4. The graph analysis reveals a notable agreement between the numerical results presented by
Bui et al. [14] and those obtained in the present analysis. In the case where the connection is considered fully
rigid, the initial stiffness and critical load obtained in this work do not perfectly align with the literature results,
although the agreement is still satisfactory in the linear and nonlinear phases. When considering the analysis
with the semi-rigid connection effect, the convergence is even more expressive, with the curves showing greater
proximity.

Furthermore, it is important to highlight that the critical loads from the analysis of the two types of connec-
tions are quite close. The difference is only 1.96% for the fully rigid connection and 2.86% for the semi-rigid
connection, as presented in Table 1.

Figure 5 shows the equilibrium paths of the simple frame with concrete-filled circular columns and steel
beam. The interpretation of the graph reveals a convergence of the results from Bui and Kim [15] and those from
this work, especially for the structure with the semi-rigid connection. In the scenario of the fully rigid connection,
there is more pronounced convergence in the initial phase, slightly diverging during the initial loss of stiffness.
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Figure 4. Equilibrium paths of the frame with rectangular column

Table 1. Critical loads of the frame with rectangular column

Connection CS-ASA Bui and Kim [15] Difference

Rigid 0.998 1.018 1.96%

Semi-rigid 0.826 0.803 -2.86%

Figure 5. Equilibrium paths of the frame with circular column

Finally, the load limits also show good similarity, with a difference of less than 1% for the fully rigid system
and approximately 3% for the structure with the semi-rigid connection, as detailed in Table 2. All these analyses
highlight the robustness and coherence of the results generated by the proposed formulation, even in conditions
that incorporate the semi-rigid connection between the beam and columns.

Table 2. Critical loads of the frame with circular column

Connection CS-ASA Bui et al. [14] Difference

Rigid 0.500 0.505 -0.99%

Semi-rigid 0.408 0.421 -3.08%

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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4 Conclusions

The primary scientific contribution of this study is the validation and demonstration of the proposed formula-
tions’ effectiveness in accurately capturing the structural behavior of steel-concrete composite frames, incorporat-
ing various sources of non-linearities. The simulated examples demonstrated a satisfactory convergence between
the results obtained in this study and the numerical and experimental data available in the literature. In both cases,
the numerical results were consistent with previous experimental data, validating the accuracy of the proposed
formulations.

This consistency underscores the formulation’s ability to accurately reproduce the behavior of the analyzed
structures. However, it is important to note that while the simplification in evaluating geometric nonlinearity
proved valid in all simulations, for very slender structures, it is highly recommended to adopt a co-rotational for-
mulation. This approach ensures more accurate and reliable results, particularly in scenarios involving significant
displacements and rotations, with minimal influence of joint semi-rigidity and yield. Additionally, the non-linear
joint model (3PP) used in the simulation proved effective, highlighting the robustness of the numerical implemen-
tations.
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