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Abstract. Accurately modeling flow in discrete fracture networks (DFNs) can be important for several fields of
engineering such as groundwater management, petroleum engineering, and geotechnical engineering where these
DFNs can play a key role in the flow patterns in a formation. These fracture networks are often complex and can
have fractures in very close proximity, which, in turn, can lead to challenges in creating fitting meshes for finite
element analyses. This work proposes a methodology to handle overlapping fractures in the context of simulating
flow in fractured porous media using a Mixed Finite Element Method formulation. With this capability, fractures in
close proximity can simply occupy the same geometric location in the mesh, which avoids the creation of elements
with poor aspect ratio. In this work, the porous media flow is modeled with traditional Darcy’s equations and
the fractures and their interaction with the porous media are modeled using the Discrete-Fracture-Matrix (DFM)
representation. A mixed finite element formulation is adopted to solve the flow problem in both porous media
and fractures, which has key features such as local mass conservation and improved velocity approximation. The
mesh generation is done using the DFNMesh algorithm, which is a mesh generator for DFNs that can handle
overlapping fractures by using pre-defined user settings. The proposed methodology is analyzed using a set of
numerical examples, which show the importance of the treatment even for very simple cases and that it can handle
overlapping fractures and provide accurate results for the flow in complex fractured porous media problems.

Keywords: Discrete fracture-matrix model, Discrete Fracture Networks, Mixed finite elements, Porous media
flow

1 Introduction

More than half of the Earth’s continental surface is covered by low-permeability rocks, which impede fluid
flow in the reservoir matrix [1]. Fracturing these rocks can significantly enhance their permeability, and given that
approximately 65% of oil reserves [2] are also located in naturally fractured reservoirs, it is essential to develop a
reservoir simulator that considers the secondary permeability introduced by fractures. This additional permeability
greatly influences the flow patterns within the porous media.

The Discrete-Fracture-Matrix (DFM) model has emerged as an increasingly popular technique for simulating
flow in fractured porous media [3, 4]. In the DFM framework, fractures are depicted as lower-dimensional elements
at the interfaces of matrix finite elements. Although this model accurately captures the physical behavior, it poses
challenges for meshing algorithms in finite element approximations. Fractures act as constraints, leading to overly
fine meshes or elements with poor aspect ratios. Therefore, achieving a robust and adaptable discretization for
DFM modeling remains a significant challenge [5].

Various discretization methods have been proposed to solve the equations associated with DFM modeling of
fracture networks. These methods include the Finite Element Method (FEM) [6], Discontinuous Galerkin Methods
(DG) [7], Finite Differences Methods (FD) [8], Finite Volume Methods (FVM) [9], Virtual Element Methods [10],
Generalized/eXtended Finite Element Methods (G/XFEM) [11], Mixed Finite Element techniques [5, 12], the Cut
Finite Element Method (CutFEM) [13], and the Embedded Finite Element Method (EFEM) [14]. Each of these
techniques offers unique benefits and challenges. Benchmark problems have been developed and analyzed to
compare the effectiveness of these methods, demonstrating ongoing advancements in this area [15, 16].
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This work examines fluid flow in discrete fracture networks using a locally conservative and stable mixed
finite element method [12, 16, 17]. Some advantages of the method are its local mass conservation and strong
enforcement of divergence-free conditions for incompressible flows. This method is therefore crucial for coupling
fluid flow with transport problems such as heat and saturation in multiphase flows. The methodology involves
generating conforming meshes in complex fracture networks without excessive refinement. For that, the DFNMesh
algorithm [18] is employed and a methodology to handle overlapping fractures while maintaing accuracy and
stability is developed and explored. Through a benchmark problem, the performance of this approach is evaluated,
showcasing its capability in accurately simulating flow in fractured porous media even with coarse meshes.

2 Methodology

2.1 Constitutive treatment for merged fractures during discretization

When fractures are very close together, the snapping tolerances of the DFNMesh algorithm may cause them
to be merged into a single location within the generated Finite Element mesh. This merging neglects the influence
of the porous matrix between these fractures. Figure 1 illustrates this issue with an initial coarse mesh composed
of two hexahedral elements. In this example, the DFNMesh algorithm uses two fractures (depicted in blue and red)
to create a conforming mesh. The fractures are located at distances ld1 and ld2 from the interface between elements
of the initial coarse mesh. Based on the chosen tolerance in DFNMesh, these fractures can either refine the initial
mesh into four hexahedral elements or merge into a single location within the initial mesh. If merging occurs, the
porous media’s effect between the fractures would be disregarded.

ld2ld1

ld1 < εd

ld2 < εd

ld1 > εd

ld2 > εd

Polygon defining

fracture 1

Polygon defining

fracture 2

Figure 1. The DFNMesh algorithm can encounter issues with overlapping fractures when generating
Finite Element meshes. Depending on the adopted snapping tolerances, fractures labeled as 1 and 2
may end up overlapping at the same location within the generated mesh.

To preserve critical flow characteristics, the perpendicular flux u(ij) between two overlapping fractures i and j
is explicitly modeled. The fluid exchange between these fractures is governed by the following constitutive law:

u(ij) = −K(ij)
(p2,i − p2,j )

d(ij)
(1)

where K(ij) is the hydraulic conductivity of the porous media normal to both fractures, while p2,i and p2,j are
the pressures at the respective points on fractures i and j . The term d(ij) = d(ij)(x) represents the actual distance
between the fractures. Figure 2 visually explains these variables. It is important to highlight that this approach
only considers the flow that is perpendicular to the fractures.
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Figure 2. Constitutive treatment for overlapping fractures involves addressing fractures i and j , which
have domains Ω2,i and Ω2,j , respectively. Although these fractures overlap in the generated Finite Ele-
ment mesh, they originally maintain a distance d(ij) between them. To account for the porous media’s
effect between these fractures, a flux variable u(ij) is introduced.

2.2 Governing equations

In [12], the mixed weak formulation of the governing equations is outlined for two-dimensional DFM sce-
narios. This paper extends that formulation to three-dimensional problems. The key distinction in 3D is that
intersections between 2D fractures occur in one-dimensional spaces.

The H(div,Ωd ) and L2(Ωd ) spaces have their usual meaning:

H(div,Ωd ) =
{
%i ∈ L2(Ωd ); div(%) ∈ L2(Ωd )

}
d = 2, 3 (2)

L2(Ωd ) =
{

f :
∫
Ωd

f 2 dΩd <∞
}

d = 1, 2, 3 (3)

The following sets are defined for the weak form:

V(Ωd ) =
{

v ∈ H(div,Ωd ); v · n |∂ΩdN
= 0
}

d = 2, 3 (4)

U(Ωd ) =
{

u ∈ H(div,Ωd ); u · n |∂ΩdN
= udN

}
d = 2, 3 (5)

The full weak form of the problem is detailed in equations (6) to (11). The new terms associated with
the overlap are highlighted in red. The weak form of the governing equations is: Find (p3, u3, p2, u2, p1) ∈
L2(Ω3)× U(Ω3)× L2(Ω2)× U(Ω2)× H1/2(Ω1) such that:∫

Ω3

ũ3 ·
(

K−1
3

)
u3 dΩ3 −

∫
Ω3

∇ · ũ3 p3 dΩ3 +
∫
∂Ωf

3

(
ũ3 · nf

)
p2 d∂Ωf

3 +∫
Ω2

Ktr
(
ũ3 · nΓ2

)
(u3 · nΓ2 ) dΩ2 +

∫
∂Ω3D

(
ũ3 · n3

)
p3D d∂Ω3D = 0 ∀ ũ3 ∈ V(Ω3) (6)

−
∫
Ω3

p̃3∇ · u3 dΩ3 = 0 ∀ p̃3 ∈ L2(Ω3) (7)∫
Ω2

ũ2 ·
(

1
a2

K−1
2

)
u2 dΩ2 −

∫
Ω2

∇ · ũ2 p2 dΩ2 +
∫
Ω1

p1
(
ũ2 · n1j

)
dΩ1 +∫

∂Ω2D

(
ũ2 · n2

)
p2D d∂Ω2D = 0 ∀ ũ2 ∈ V(Ω2) (8)

−
∫
Ω2

p̃2∇ · u2 dΩ2 +
∫
∂Ωf

3

p̃2 (u3 · nf ) d∂Ωf
3 +
∫
Ω(ij)

p̃2u(ij)s(ij) dΩ(ij) = 0 ∀ p̃2 ∈ L2(Ω2) (9)∫
Ω1

p̃1

∑
j

u2 · n1j dΩ1 = 0 ∀ p̃1 ∈ L2(Ω1) (10)

∫
Ω(ij)

K−1
(ij) d(ij)u(ij)ũ(ij) dΩ(ij) +

∫
Ω(ij)

(p2,i − p2,j )ũ(ij) dΩ(ij)= 0 ∀ ũ(ij) ∈ L2(Ωij ) (11)
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where Ktr = a2
2K eq

2
, ũ3 is the test function for matrix velocity, and p̃3 is the test function for matrix hydraulic head.

Similarly, ũ2 and p̃2 are the test functions for fracture fluid flow and fracture fluid hydraulic head, respectively.
The domain of fracture intersections is represented by Ω1, with p1 denoting the fluid hydraulic head at a fracture
intersection and p̃1 as the corresponding test function. The vector n1j is tangent to fracture j at the intersection.
Equation (10) asserts that the sum of fracture fluxes at an intersection must be zero, indicated by the summation
symbol

∑
, which accounts for the possibility of more than two fractures intersecting at the same location. The

third term in Equation (6) is evaluated over the boundary ∂Ωf
3, covering both faces of the fracture. The sign

function s(ij) equals 1 if fracture i is the first fracture in the overlap region and -1 if it is not. In cases of overlap,
the region d∂Ωf

3, which typically represents the two faces of a given fracture, only includes the faces that are not
within the overlapping area. The chosen approximation spaces – H(div) for velocity/flow and L2 for hydraulic
head – are noted for their stability and essential properties, such as local mass conservation and strong divergence
enforcement [17].

3 Examples

3.1 Two overlapping fractures

This example features two fractures that may partially overlap within the generated Finite Element mesh,
contingent upon the snapping tolerances set for the DFNMesh algorithm. Illustrated in Figure 3a are the problem
domain and boundary conditions. The material properties adopted are K3 = I, m/s (where I is the identity matrix),
K2 = 103, I, m3/s, K eq

2 = 104, m/s, and a2 = 10−1, m. The initial coarse mesh used for the DFNMesh algorithm is
depicted in Figure 3b, while the snapped and non-snapped generated meshes are shown in Figure 4. The analysis
includes three scenarios regarding the overlap of fractures in the generated Finite Element mesh. In the first
scenario, the permeability of the porous media between the fractures (K(ij)) is assigned the actual value of the
porous media. In the second scenario, K(ij) is set to a very high value, simulating two fractures sharing the same
pressure in the overlapping region. In the third scenario, K(ij) is given a very low value, representing fractures that
do not exchange flow in the overlapping region.

p3D1 = 1 m
p3D2 = 0 m

Ω2,1 Ω2,2

(a) Problem domain and boundary conditions. (b) Initial coarse mesh for the DFNMesh algorithm.

Figure 3. Problem with two fractures – domain and initial coarse mesh.

Figure 5 presents the flow results in the x-direction for each fracture and case along a line passing through the
length of the fractures. It is observed that treating overlapping fractures with the actual permeability of the porous
media aligns closely with the non-overlapping scenario. Conversely, when fractures in the overlapping region
are assumed to have the same pressure (high K(ij)), the flow in the x-direction in each fracture is overestimated.
On the other hand, assuming that the fractures do not exchange flow with each other (low K(ij)) results in an
underestimation of the flow in the x-direction in each fracture.
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(a) Without snapping (εd < 0.1 m). (b) With snapping (εd > 0.1 m).

Figure 4. Problem with two fractures – meshes generated by the DFNMesh algorithm using different
tolerances for snapping.
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Figure 5. Flow in the x–direction along lines defined from (−0.8 m, 0 m) to (0.2 m, 0 m) for the top fracture
and (−0.2 m, 0 m) to (0.8 m, 0 m) for the bottom fracture. Comparing cases without fracture overlap and
with fractures overlap with different normal porous media permeabilities between the fractures.

3.2 Benchmark problem

As detailed in [16], this problem involves a network of 8 fractures within a cubic 3D domain, illustrated in
Figure 6a. Building on the analysis conducted by [18], four different cases are examined, each varying in snapping
tolerances. Case A provides the most precise description of the fractures, while Case D exhibits significant overlaps
between fractures. Each fracture in the domain is labeled from f1 to f8, as depicted in Figure 6b.

Results of fluid entering and leaving fracture f8 are shown in Figure 7, where it is observed that the treatment
for overlapping fractures proposed here leads to a good representation of the fluid exchange between fractures even
when the geometric fidelity is not very accurate (case D).
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(a) Problem domain, network of 8 fractures, and bound-
ary conditions of inflow (blue) and outflow (purple) of the
benchmark problem [16].

f1

f2

f4 f3

f5f6

f7

f8

(b) Labels adopted for each fracture in the domain.

Figure 6. Problem domain and fracture labels.
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Figure 7. Fluid flow exchange between fracture 8 (f8), connecting fractures and volume (Ω3) for mesh
cases A, B, C and D.

4 Conclusions

This work analyzes a method for simulating flow in fractured porous media, emphasizing local conservation,
which is crucial for this type of simulation [5]. The methodology presented addresses overlapping fractures by
modeling only the transverse flow between them, adding minimal degrees of freedom to the global system of equa-
tions. The method’s effectiveness is demonstrated through a simple example and a benchmark problem revealing
that the proposed treatment for overlapping fractures in Section 2.1 accurately represents fluid exchange between
fractures, even when geometric fidelity is less precise.
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