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Abstract.
Numerical simulation stands out as a fundamental method in the oil industry, allowing the prediction of

fluid flow in porous media. Its primary objective is to analyze behavior and forecast oil production through fluid
injection. However, the need for numerous simulations, each encompassing various multidimensional and com-
positional characteristics, presents a challenge. This leads to a significant accumulation of physical information,
exacerbating the computational demands on the numerical model, especially regarding computational cost. To
address this challenge, a potential solution is determining which input parameters are essential for accurate oil
production prediction. Global sensitivity analysis emerges as a powerful tool for this purpose, aiming to identify
which input parameters exert the most significant influence on the numerical model’s response, thereby reducing
computation time. Unlike traditional approaches that focus on sensitivity around a single operating point, this
study adopts a comprehensive perspective, evaluating sensitivity across the entire input sample space. Specifi-
cally, this research investigates the impact of changes in parameters related to the relative permeability curves of
a core plug during unsteady-state water injection experiments. The primary metric analyzed is accumulated oil
production. Sobol’ indices, a method for quantifying global sensitivity, are employed to assess the contribution of
each input parameter’s variance to the variance of the results. The mathematical framework used is based on the
Buckley-Leverett equation for multiphase (water/oil), one-dimensional longitudinal flow, assuming incompress-
ible fluids and constant water injection. The model is solved using an implicit finite difference methodology with
time step control, with relative permeability parameterized by the LET model. The results of this analysis provide
insights into reducing the number of varying parameters in the input for inverse problems on a global scale. Of the
ten parameters analyzed, two were the most sensitive. This reduction significantly decreases computational costs,
offering greater flexibility in constructing surrogate models for simulations of flows in porous media.

Keywords: Global sensitivity analysis; LET model; Relative permeability; Buckley Leverett.

1 Introduction

One of the main objectives of petroleum and gas engineering is to predict fluid flow through porous media
in hydrocarbon reservoirs. These predictions are based on analyses obtained through bench studies, which utilize
software simulations to analyze flow through rock samples. Numerical simulation is one of the computational
methodologies employed in petroleum engineering to estimate reservoir characteristics and predict behavior [1].
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This methodology involves inputting the physical properties of rocks and fluids present in the porous media into
simulators to obtain responses closely resembling real flow conditions. One of these properties is the relative per-
meability, traditionally obtained by combining core-flooding experiment data such as net production and pressure
drop, and computational methods for inverse modeling [2].

Core-flooding experiments usually lead to the acquisition of cumulative oil production curves differential
pressure curves, and saturation profiles (depending on the exact type of experiment) that are matched by a nu-
merical model by tuning the respective parameters of the flow model, such as the relative permeability kr [2].
In this paper, water flow is injected into a rock plug, typically saturated with oil, and inserted into a core holder
(to maintain controlled pressure). During this injection, sensors measure inlet and outlet pressure differentials,
fluid volume, and flow rate at the rock outlet. This experiment can be conducted under steady-state or transient
conditions. Transient state methods can maintain a constant flow rate (with pressure monitoring) or constant pres-
sure (with flow rate monitoring). The oil produced during displacement, combined with flow rate or pressure
differentials, provides data used to estimate relative permeability curves.

Equations representing this flow are based on hydraulic diffusivity equations, from which Darcy’s law origi-
nated and has been further refined. The mathematical basis for interpreting test data can be summarized as follows:
Leverett combined Darcy’s law with a differential capillary pressure definition to obtain the water fraction in the
output flow [3]. The Buckley-Leverett model is utilized in this study to analyze the water and oil saturation in the
sample throughout water injection and within the rock plug space being studied. These equations describe the flow
of water and oil fluids in a two-phase system. Additionally, it takes into account any porous solid material, except
for geological characteristics.

Since these functions depend on numerous variables, it is important to know which ones are the most im-
portant. The important variables in one part of the input space may not be the same in another, and they can also
fluctuate over time, which has motivated the development of global sensitivity measures.

Furthermore, sensitivity analysis is the study of how uncertainty in the output of a model can be apportioned
to different sources of uncertainty in the model input factors [4]. Global Sensitivity Analysis (GSA) can be defined
by a variance decomposition method, which aims to decompose the output variance as the sum of the contributions
of each input variable or their combinations. A GSA method recently explored in engineering is the Sobol’ indices,
which aim to determine the expansion of the computational model in terms of increasing dimensional sums relative
to conditional variances. One of its primary advantages is the ability to handle nonlinear and non-parametric
models and provide both quantitative and qualitative classification [5].

2 Methodology

2.1 Two-phase flow model

The Buckley-Leverett (BL) model can be used to approximately determine the water-oil displacement in a
petroleum reservoir [6]. According to the model’s fundamental assumption, the porous media is completely filled
with immiscible and incompressible fluids, there is no chemical reaction occurring at the interface between the
fluids, the flow is in a horizontal direction and the effects of capillary forces are not taken into consideration. The
BL model is given by:

ϕ
∂Sw

∂t
+ v

dfw
dSw

∂Sw

∂x
= 0, (1)

where ϕ represents the porosity function, v the water flux velocity, Sw the water saturation, and fw = λw

λw+λn
.

The fractional flow that indicates the wettable phase contribution. The correlation λα = kα

µα
where kα is the

the relative permeability of the α phase (in our case, water and oil) and µα its respective viscosity.
The LET relative permeability correlations for water injection and oil production. The normalized water

saturation is first defined as [7]:

Swn =
Sw − Swi

1− Swi − Sorw
(2)

The correlations for oil relative permeability with water injection and water relative permeability with oil produc-
tion are written as:

kro = kxro
(1− Swn)

Lw
o

(1− Swn)L
w
o + Ew

o Swn
Tw
o
, (3)
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krw = korw
S
Lo

w
wn

S
Lo

w
wn + Eo

w(1− Swn)T
o
w

, (4)

where korw and kxro are, respectively, the relative permeability endpoints for the water relative permeability and oil

relative permeability, while the parameters Lw
o , Ew

o , and Tw
o are called phenomenological parameters which define

the shape of the relative permeability curves. Swi stand for the water initial saturation and Sorw the residual oil
saturation after water injection.

The open source 1D finite difference solver called Core2Relperm [3] is used to solve Eq. 1 and its corre-
sponding boundary conditions for a base case (see Berg et al. [8] for additional details regarding grid, and boundary
conditions). The petrophysical properties used in the simulations are as follow.

Property Units Value

Core length (L) cm 5.0

Core diameter cm 3.8

Absolute permeability mD 50

Porosity v/v 0.2

Water viscosity cP 1.0

Oil viscosity cP 3.0

Water density kg/m³ 1000.0

Oil density kg/m³ 850.0

Initial water saturation v/v 0.2

Flow rate cm³/min 0.1

Table 1. Summary of physical properties for the numerical simulations.

Subsequently, the water saturation values of the plug are determined as follow:

Q(t) =

∫ L

0

Sw(x, t)dx (5)

2.2 Global sensitivity analysis

The global sensitivity analysis is used to assess how the parameters of Eq. 2, 3 and 4 and their interactions
contribute to the aforementioned studied quantities, i.e., water saturation, pressure drop, and cumulative oil produc-
tion. For this, we used the variance-based Sobol indices [9]. Given a mathematical model f that has k independent
input parameters gathered into an input vector X and an output scalar Y = f(X), where X = {X1, X2, . . . , Xk}.
According to Sobol [9], the model can be decomposed into sums involving different dimensions of X to obtain Y .

Equation (6) has the property of orthogonality in terms of conditional means. In this way, it is possible to
define the Sobol’ decomposition in terms of conditional variances [4].

f = f0 +
∑
i

fi +
∑
i

∑
j>i

fij + ...+ f12...k (6)

The first order Sobol’ indices quantify the additive effect of each input separately in relation to the total
variance, as can be seen in Equation (7).

Si =
V[E(Y |(Xi)]

V(Y )
(7)
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The interaction effects of the inputs, as a second-order index, as we can see in the equation below,

Sij =
V[E(Y |(Xij)]

V(Y )
for i ̸= j (8)

and the total Sobol’ indices, which are the sum of their primary parameter, plus the secondary ones:

STi =
EX∼i

(VXi
(Y |X∼i))

V (Y )
= 1− VX∼i

(EXi
(Y |X∼i))

V (Y )
. (9)

Sobol sampling was carried out for ten parameters with minimum and maximum intervals based on empirical
values for LET parameterization [7], as depicted in Table 2.

Parameters Minimum Maximum

Swi 0.05 0.35

Sorw 0.05 0.35

Lo
w 1 20

Eo
w 0.5 20

To
w 0.5 20

Lw
o 1 20

Ew
o 0.5 20

Tw
o 0.5 20

korw 0.05 1

kx
ro 0.05 1

Table 2. Ranges used for the Sobol samples.

3 Results and Discussion

As aforementioned, the main objective of the GSA is to generate a ranking regarding parameter importance
throughout the whole time of the experiment. For each timestep was generated Sobol’ indices using the SALib
library [10, 11], which can be visualized in Fig. 1. It was observed that out of the ten parameters analyzed, two
are the most sensitive to input variability, namely Lw

o and Sorw, followed by To and Swi. Parameters related to
the water flow, such as Lo

w, Eo
w, T o

w, showed an insensitive behavior. Notice that in Fig. 1, the Sobol indices’ are
stacked, and the sum of their total values is expected to be equal to 1.

It is important to note that the sensitivity of the parameters varies over time. Therefore, depending on the
specific moment being analyzed, certain parameters may exhibit higher sensitivity compared to others within the
same sampling. This phenomenon is especially evident in small time intervals, where parameters such as T o

w,
Lo
w, and Sorw exhibit a peak followed by a decline and stabilization. Additionally, the parameter Lw

o experiences
continuous growth and maintains the highest index.

Figure 2 shows the total Sobol’ indices for all ten parameters analyzed. Notably, there is no change in the
ranking of the most sensitive parameters when compared to the first-order index, particularly at the end of the
experiment. This indicates that the individual response of each parameter is more crucial than their variation in
pairs with the other analyzed parameters, i.e., from S1.2 until S1.10 indices.

The sensitivity of the parameters can be quantitatively observed in Table 3 over time. More precisely, it
emphasizes four distinct time intervals, specifically T1, T2, T3, and T4, which correspond to 10, 40, 200, and 600
minutes, respectively. Highlighting the values of S1 and ST for Swi at Time 1: The first-order index (S1) has a
much lower value than the total index (ST), indicating that at this point, Swi has greater variability with the other
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parameters than on its own. However, this same parameter at Time 4 is no longer as sensitive, either individually or
in interactions with the other parameters. There is a noticeable trend where the interactions between parameters and
their pairs are substantially greater at the start of the experiment, specifically during small times of the experiment.
However, as the experiment progresses, the primary Sobol indices and the total Sobol indices show little deviations.

Figure 1. Sobol first-order index of accumulated oil production volume.

Figure 2. Sobol total index of accumulated oil production volume.

It’s noteworthy that the number of samples directly influences the confidence interval of the data; hence, a
convergence analysis of the Sobol method was conducted. In this study, the required number of simulated samples
was 28,835,84. The total simulation time was 437.5 hours, using a computer with the following specifications:
Processor 12th Gen Intel(R) Core(TM) i7-12700 2.10 GHz with 16,0 GB RAM Memory.

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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T1 T2 T3 T4

Parameters S1 ST S1 ST S1 ST S1 ST

Swi 0.109 0.513 0.145 0.161 0.094 0.108 0.077 0.090

Sorw 0.027 0.155 0.213 0.226 0.235 0.248 0.246 0.260

Lo
w 0.138 0.578 0.058 0.093 0.017 0.36 0.098 0.024

Eo
w 0.003 0.071 0.002 0.004 0.001 0.002 0.001 0.001

To
w 0.026 0.215 0.054 0.075 0.029 0.043 0.021 0.034

Lw
o 0.012 0.134 0.264 0.306 0.417 0.455 0.474 0.512

Ew
o 0.002 0.027 0.007 0.010 0.008 0.013 0.007 0.011

Tw
o 0.044 0.236 0.109 0.138 0.093 0.118 0.074 0.096

korw 0.009 0.115 0.023 0.446 0.014 0.023 0.012 0.017

kxro 0.022 0.163 0.031 0.062 0.020 0.037 0.016 0.026

Table 3. Sobol indices.

4 Conclusions

The global sensitivity analysis using the Sobol indices provides a very robust response to the analyzed model
once it is possible to quantify the importance of a parameter, attributing to it a value in the range of 0 to 1 and
analyzing its response alone and in pairs. It is particularly beneficial when used in core-flooding experiments,
as it relies on properties that are highly parameterized. The optimization of relative permeability curves benefits
greatly from this approach, as it allows for the fixation of insensitive parameters and the prioritization of sensitive
parameters.

Out of the ten parameters examined, only two, Lw
o and Sorw, were found to have a significant impact on

net production volume. Swi and Tw
o showed some sensitivity, while Ew

o and the other water parameters (Lo
w,

Eo
w and T o

w) were found to be insensitive. Additional discoveries indicate that the sensitivity fluctuates over the
course of the experiment and that the interactions between pairs of parameters are more significant at the start
of the experiment. This preliminary analysis is important because it allows for reduced computational costs and
better predictions for future optimizations. To enhance future analyses, incorporating the impacts of capillary
pressure and devising strategies to address the less responsive parameters will yield valuable insights for a more
comprehensive understanding of the core-flooding experiment.
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