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Abstract.The Design of Experiments (DOE) methodology plays a fundamental role in the parameterization of 

Computational Fluid Dynamics (CFD), especially in mesh optimization and simulation accuracy. Using DOE, 

researchers can identify which mesh parameters influence flow quantities, leading to better numerical accuracy 

and design decisions based on CFD results. Within DOE methodologies, Response Surface Methodology (RSM) 

is used for experiment planning and response analysis, allowing optimization of process parameters and providing 

a systematic approach to designing experiments and analyzing results. Multiobjective optimization (MOP) was 

carried out, using weight assignment strategies based on the Design of Mixtures of Experiments (MDE) to 

understand the behavior of the functions. The systematic approach adopted the planning of experiments, 

assessment of significance between independent variables, identification of individual optimal points and use of 

the Payoff matrix. This approach made it possible to identify how each function operates from the perspective of 

weighing needs, validating the methodology. 

Keywords: Design of Experiments,Computational Fluid Dynamics, Mixture Design Experiments, Response 

Surface Methodology. 

1  Introduction 

The Design of Experiments (DOE) methodology plays a fundamental role in the parameterization of 

Computational Fluid Dynamics (CFD), particularly when dealing with mesh optimization and simulation 

accuracy.[1], [2], [3], [4], so that by using DOE, researchers can identify which mesh parameters can influence 

flow quantities, leading to better numerical accuracy and design decisions based on CFD results[1]. Thus, this 

methodology has been applied in various fields, such as optimizing turbomachinery design, investigating optimal 

pump designs, and predicting solid particle erosion in pipe elbows through CFD simulations and DOE 

techniques.[2], [3]. Therefore, the integration of DOE with CFD allows the efficient use of computational power 

to predict flow effects, cavitation, optimize port layouts for combustion systems and determine the ideal lengths 

of tube sections, both thermodynamically and hydraulically. ultimately improving the overall performance and 

efficiency of the systems under study[3], [4], [5]. 

Within DOE methodologies, Response Surface Methodology (RSM) is a statistical and mathematical 

technique used for planning experiments and analyzing responses[6], [7], [8]. RSM allows researchers to optimize 

process parameters by relating independent input variables to the response, providing a systematic approach to 

designing experiments, analyzing results, and approximating variable-based responses. RSM's basis in principles 

of regression and variance analysis allows the development and optimization of processes or products with 

satisfactory accuracy, making it a valuable tool for various fields of engineering and statistics[8], modeling through 

responses to functions defined as objectives. 
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With a group of functions, a multiobjective optimization problem (MOP) is given, so that the resolution of 

all functions is required, which in practice does not occur. In normal situations, the improvement of one response 

directly affects the others, especially when the directions of improvement are opposite, such as maximization and 

minimization. In this way, the weight attribution strategy based on the Design of Mixtures of Experiments (MDE) 

is used, so that, as suggested by Das and Dennis[9]that the number of subproblems that must be solved in Normal 

Boundary Intersection depends on the objective functions considered in the MOP problem and the uniform spacing 

used between the weights. Therefore, defining the weights helps the decision maker to choose the best strategy for 

each situation. 

Thus, the study aims to present new parameterization and mesh analysis tools, to promote the accuracy of 

results with lower process costs, focusing on the choice of objective functions suitable for multiobjective 

optimization (MOP). In order to use advanced techniques, such as the Response Surface Methodology (RSM), the 

Normal Boundary Intersection (NBI) and the Design of Mixture Experiments and analysis of optimal results, we 

seek to develop methods that allow a more accurate analysis and efficient analysis of meshes and post-processing 

responses, taking into account a multivariate or multiobjective analysis. This approach seeks to significantly 

improve the quality of the solutions obtained, in addition to offering a better understanding of the trade-offs 

between different objectives. 

2  Theoretical Background 

When dealing with planning of experiments (DOE) methodologies, there are several arrangements that use 

factors with upper and lower limits to facilitate mapping of the solution region, with techniques including full 

factorial arrangements, fractional factorials, Taguchi and surface methodology. response (RSM)[10]. RSM is a 

method that creates approximate quadratic functions through a sequence of experimental setups to identify areas 

of curvature[11], so that, after the modeling and experimentation phases, the developed functions are incorporated 

into non-linear optimization algorithms, with or without restrictions. 

Thus, a complete second-order quadratic polynomial, described in eq. (1), is the most used option for 

nonlinear stochastic models[12]. To reduce complexity, it is advisable to limit the number of independent variables 

chosen to up to 5, in addition, the models can be used with optimization algorithms to determine the ideal 

conditions to maximize or minimize the system response. 

 𝑓(𝐱) = 𝛽0𝑝 + ∑ 𝛽𝑖𝑝𝑥𝑖
𝑘
𝑖=1 + ∑ 𝛽𝑖𝑖𝑝𝑥𝑖

2𝑘
𝑖=1 + ∑ ∑ 𝛽𝑖𝑗𝑝𝑥𝑖𝑥𝑗𝑖<𝑗 + 𝜀    ∀𝑝 = 1,2, … , 𝑟 (1) 

Where k is number of independent variables; 𝛽0 the function-independent term; 𝛽𝑖 the coefficients referring 

to the linear effect; 𝛽𝑖𝑖  the coefficients referring to the quadratic effect; 𝛽𝑖𝑗 the coefficients referring to the 

interaction effects measured between the input variables 𝑥𝑖 and 𝑥𝑗, and p denoting the number of objective 

functions considered.  

In possession of the p objective functions, it is noted that the functions rarely present significant curvatures, 

promoting a search for these curvatures from linear models resulting in a multiobjective optimization problem 

with inequality restrictions, as presented in eq. (two). 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1(𝐱), 𝑓2(𝐱), … , 𝑓𝑝(𝐱)       𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑔𝑗(𝐱) ≤ 0, 𝑗 = 1,2, … , 𝑚 (2) 

In general, the objective of optimization in this case is to determine the direction that leads to the region of 

maximum or minimum, as there is no single solution that minimizes all functions to be analyzed simultaneously, 

considering that a set of individual gradients helps to balance the directions of improvement of these responses by 

replicating the gradient vector method (GRG) for each individual response. 

Thus, the concept of Pareto Frontier (Figure 1) is often associated with MOP, being essential for carrying out 

equilibrium analysis, in which, according to its concept, it proposes that the frontier points are the set of non- 

dominated from objective space[13], so that one cannot be improved while the other is not worsened. 

To draw the curve of Pareto-optimal points, the Normal Boundary Intersection (NBI) method, developed by 

Das and Dennis, is used.[9], which thoughtfully aggregates all objective functions through weights, considering 

specific targets and scaling individual functions, promoting the ability to present uniform and continuous 

boundaries regardless of the distribution of weights. 

The individual optimal points, as well as the effects that these points have on related functions, are the targets 
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of the model and are known as the results of the Payoff matrix. The utopia point, or optimal point of a function in 

bold, and the Pseudo-Nadir points (points contrary to utopia), are the anchor points of this matrix in Tab. 1, 

considering that we will work with more than two functions goal. 

 

Figure 1. Pareto Frontier. 

Table1. Payoff Matrix. 

𝑓11
𝑈 (𝐱) 𝑓12

𝑃𝑁(𝐱) 𝑓13
𝑃𝑁(𝐱) 

𝑓21
𝑃𝑁(𝐱) 𝑓22

𝑈 (𝐱) 𝑓23
𝑃𝑁(𝐱) 

𝑓31
𝑃𝑁(𝐱) 𝑓32

𝑃𝑁(𝐱) 𝑓33
𝑈 (𝐱) 

Considering then that the values in Tab. 1 refer to the results of individual optimizations, it is necessary to 

use multiobjective optimization (MOP) approaches. The approach presented here considers the analysis of the 

multivariate Mahalanobis distance between a vector of functions f(x) and a centroid vector of individual targets 

(𝚽), so that, relating the response vector (z(x)), the matrix X and the variance-covariance matrix (𝚺), forming a 

global function F(x). 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 F(𝐱) =  {[𝐟(𝐱) − 𝚽]𝑇{[𝐳𝐓(𝐱)(𝐗𝐓𝐗)−1𝐳(𝐱)𝚺]−1}[𝐟(𝐱) − 𝚽]}
1

2⁄  (3) 

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: g(𝐱) = 𝐗𝐓𝐗 ≤ ρ2  

Where: ρ is the radius of the solution region. 

To define the centroid vector targets, the use of a special arrangement called the Experiment Mixture 

Arrangement (MDE) is considered, in which the arrangement is generated through independent factors that are 

considered as proportions of different components. For the case study, the independent factors will be defined by 

the Payoff matrix, and the arrangement will define with which weights (w1, w2 and w3) that the mixture of functions 

will promote better results. 

3  Case Study on Parametric Mesh Analysis Using MOP and MDE 

3.1 Model of Simulation 

This study is based on the model developed by Azevedo[14]which involved the modeling of the entire test 

bench combined with the design of a hydraulic machine adaptable to the bench, seeking the best performance. The 
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author designed several interconnected domains, considering input elbows, regularization duct according to IEC 

60193[15], inlet bulb, distributor, rotor, shaft outlet, and reservoir return outlet elbow, however for this work, only 

the inlet piping to the bulb will be used, as shown in Fig. 2. 

 

Figure 2. Virtually modeled experimental test bench. 

To reduce simulation time, and because it is a symmetric modeling, the study also planned to use only a 

quarter of a circle to generate the meshes, using a periodic one, which can be rotated to understand the complete 

flow. 

3.2 Parameterization of Mesh Model 

Following the experiment planning methodology, and more specifically, RSM, five independent variables 

were used in the study as input, being: the predefined size in millimeters for volume (MV), for the entrance surface 

(ME), exit surface (MS), inlet mass flow rate (𝑚̇) and residual convergence criterion by RMS (CC) in the 

simulation stage. 

For the standard arrangement, due to the established limits, the radius of the solution region was changed to 

ρ=0.5, which defined the factorial, axial and central points of the model presented in table g. The parameterization 

model involved the use of Central Composite Design (CCD) structured with two levels and five parameters (2k-

1=16), incorporated by ten axial points (2k=10) and six central points (CP=6), considering three replicates, thus 

considering ninety-six total experiments. 

Table 2. Independent variables. 

Symbol Unit 
Experimental Levels 

-0.500 -1.000 0.000 1.000 0.500 

MV mm 2.125 1.500 2.750 4.000 3.375 

ME mm 2.125 1.500 2.750 4.000 3.375 

MS mm 2.125 1.500 2.750 4.000 3.375 

𝑚̇ kg/s 25.574 22.455 28.693 34.930 31.811 

CC [-] 3.25x10-5∙ 1.00×10-5 5.5×10-5 1×10-4 7.75×10-5 
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3.3 Multiobjective Functions and Their Characteristics 

The use of RSM results in a group of objective functions, given by eq. (1), for defined answers. In this work, 

pre-processing responses were used, considering the number of elements generated in the meshes (Nel); processing, 

considering the mesh generation and simulation time, given as total time (Tt); and post-processing, considering 

the Reynolds number (Re) as a response item, which involves specific mass library data, dynamic viscosity, exit 

velocity and pipe diameter. 

The initial result of these analyzes results in the objective functions of each response, and from this it is 

possible to find the Payoff matrix of their individual optimal functions, analyzing how each optimal response 

affects the adjacent ones, with the numbers in bold being the Utopia points, and the others, the Pseudo-Nadir, 

checking what was presented in the theory. 

Table 3. Payoff matrix of functions 

3.9154 10.8821 6.5341 

1.8369 4.8300 2.7957 

1.3239 1.3260 1.4698 

Note: Nel (second line) and Re (third line) are presented with 106 and Tt (first line) with 101. 

Note that the aim of the individual objectives is to minimize the execution time, so the utopia is 3.9154x101 

minutes, maximizing the number of elements, with 4.8300x106 elements and maximizing the Reynolds number in 

the flow. 

3.4 Mixture Arrangement for Analyzing Function Weights 

With the Payoff matrix presented, it is now possible to define the target points that the mixture function will 

work on, and how the weights of each function affect the results. For this work, the Simplex-Lattice Design {3,2} 

with CP=1 was used for arrangement, and the target components presented in Tab. 3. The objective function is 

defined by eq. (3), in addition to the individual responses of each function, to understand how each weight affects 

the response. The data composition format was arranged as in Tab. 4., with weights of 0, 1, 0.5 and 0.33, for targets 

X1, X2, X3 that refers to Payoff Matrix. 

Table 4. Example Mixture Arrangement. 

w1 w2 w3 X1 X2 X3 F(x) 
0 to 1 0 to 1 0 to 1 3.9154 or 10.8821 4.8300 or 1.8369 1.4698 or 1.3260  

4  Discussion of Results 

Objective functions, as they are quadratic functions, can have three types of specific concavities for statistical 

analysis, namely concave, convex or saddle. For a univariate function analysis, understanding its convexity allows 

you to understand the behavior of the variables, to prevent whether the study is a maximization, minimization or 

specific target problem. In Fig. 3, the contour plot of the three objective functions is presented, with hot colors 

being close to the plane while cold colors are moving away from the plane. Of the three functions presented, it is 

possible to note that Reynolds is a saddle function, while Time and Elements are convex functions. 

Considering then a multiobjective analysis, that is, understanding the relationship that each of the objective 

functions has under the weight of a global function, it is possible to observe in Fig. 3, the behavior that the variation 

of these weights causes on these functions. In the case of a global minimization function, it is possible to note that 

the number of elements is more relevant, as is the simulation time. 

Furthermore, understanding the space in which the solution is viable is of paramount importance, that is, 

because it is a problem with several functions, when projected under the same surface, and considering the upper 

and lower limits defined by the decision maker, A solution area is found that is the result of the convergence 
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between the objective functions, presented in Fig. 4. This is the region in which it defines the capacity and 

possibility of working with the variability of the functions and defining the best optimum point of the problem. To 

solve the problem, one of the points of greatest predicted optimization of the problem, that is, minimization of 

F(x), contains the weights and functions presented in Fig. 3. 

 

Figure 3. Mixture analysis results 

 

Figure 4. Overlaid Contour Plot. 

5  Conclusions 

The objective of this work was to describe experimental planning tools and more specifically, the response 

surface methodology for analyzing and parameterizing three-dimensional model meshes for simulation in Ansys-

CFX. 

Furthermore, the aim was to understand the behavior of the meshes, directly linked to the number of elements. 
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The processing time and the Reynolds number as a post-processing response influenced the precision capacity 

with shorter processing time. 

The tools, in turn, present the possibility of analyzing the behavior of functions, promoting a gain for 

simulation engineering in terms of forms of processing study, cost reduction, increased precision and more 

conscious decision-making. 

Therefore, understanding this behavior allows the construction of a strategy that best suits the needs of 

companies, consultants and engineers in general. 
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