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Abstract. This paper presents a novel micromechanical procedure for the linear elastic homogenization of 

composites with periodic microstructures. The procedure is developed for composites with an arbitrary number of 

phases and geometric shapes of the inhomogeneities, in contrast with most existing homogenization approaches. 

Also, no restriction is made in relation to the mismatch between the properties of the phases and volume fractions 

of the inhomogeneities. The proposed procedure is based on the Eshelby equivalent inclusion approach and extends 

a model originally derived for evaluating the effective elastic moduli of periodic two-phase composites. The 

procedure represents the fluctuating elastic fields within each multiphase repeating unit cell (RUC) using Fourier 

series, resulting in Lippmann-Schwinger integral equations governing the unknown eigenstrain fields of the 

inclusions. Unlike traditional iterative algorithms used in Fast Fourier Transform (FFT)-based approaches, the 

procedure solves the integral equations straightforwardly from a scheme of partition of the domain of each 

inclusion. The efficiency of the proposal procedure is demonstrated through applications to composites with 

different arrays of coated fibers and constituent materials. 

Keywords: elastic homogenization, periodic multiphase composite, eigenstrain, equivalent inclusion. 

1  Introduction 

The great interest in materials with special properties manifested by the more diverse industrial sectors has 

motivated a considerable increase in the investigations on composites. This is justified because the composites can 

be designed and built to exhibit advanced and multifunctional performances. In the last decades, a large number 

of experimental and theoretical studies have been developed aiming at understanding the behavior of new and 

existing composites [1,2]. Among the theoretical approaches with this objective, the analytical models based on 

the mean-field micromechanics deserve to be highlighted [2]. These micromechanical models are constructed from 

the equivalent inclusion method proposed by Eshelby [3] assuming statistical homogeneity at the macroscopic 

scale. Meantime, studies have shown that the traditional mean-field approaches usually provide different results 

among themselves for composites with high volume fractions of inhomogeneities or large mismatches between 

the properties of the constituent phases, even for two-phase composites with relatively simple microstructures. 

Then, the evaluation of the effective elastic behavior of composites exhibiting such conditions requires more 

elaborated micromechanical approaches [4]. A common category of composites includes those constituted by 

inhomogeneities periodically or regularly distributed inside the matrix. Many approaches have been proposed to 

evaluate the effective properties of periodic composites, most based on the behavior of a repeating unit cell 

subjected to periodic boundary conditions. Many of these homogenization approaches use numerical tools, such 

as finite-element method (FEM) [5], finite-volume theory (FVT) [6] and Fast Fourier Transform (FFT)-based 

algorithms [7]. Considering the periodicity of the fluctuating fields in a RVE of periodic composite under 

homogeneous boundary conditions, Fourier series have been conveniently employed in the construction of 

analytical micromechanical models for homogenization of such composite materials [2]. It is worth noting that 

most of the analytical models mentioned above are developed for two-phase composites reinforced with 
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inhomogeneities of particular geometric shapes. Nonetheless, homogenization procedures for composites with 

three or more phases are very important and often needed. For periodic multiphase composites with more 

sophisticated microstructures, numerical homogenization models based on the finite-element method or finite-

volume method, for instance, can be employed. However, such procedures require the use of discretization meshes 

over all the phases of the RUC domain that, depending on the composite microstructures, can demand high level 

of refinement.  

The current work presents a theoretical approach for predicting the effective elastic moduli of 

multiphase/multilayer composites with periodic microstructures. Such composites may have an arbitrary number 

of constituent phases with no restriction relative to the geometric form of the inhomogeneities. The model 

formulation is based on the concept of eigenstrain field [3] and uses Fourier series to represent the elastic 

fluctuating fields in the repeating unit cell that characterizes the material microstructure. The problem resulting is 

governed by a set of Lippmann-Schwinger integral equations whose solution is obtained by an approximate 

straightforward procedure in the current work [8]. The ability of the proposed model is shown through applications 

in numerical examples of three-phase composites with distinct microstructural characteristics.  

2  Homogenization model for periodic elastic multiphase composites  

2.1 Generalization of the elastic equivalent inclusion method 

Consider a representative volume element (RVE) of a periodic multiphase composite, with volume 𝑉 and 

surface 𝑆, subjected to a homogeneous boundary condition defined by the displacement 

𝒖0(𝒙) = 𝑬𝟎𝒙                       for 𝒙 ∈ 𝑆 (1) 

where 𝑬𝟎 and 𝒙 indicate a constant strain matrix and the coordinate vector of points in 𝑉, respectively. The 

composite microstructure is characterized by a repeating unit cell (RUC) composed of a matrix embedding 

inhomogeneities Ω𝑟 (𝑟 = 1,2, ⋯ 𝑁) with arbitrary shapes and spatial distribution (Fig. 1(a)). The matrix and 

inhomogeneities are homogeneous and linear elastic with stiffness matrices 𝑪 and 𝑪𝑟 (𝑟 = 1,2, ⋯ 𝑁), respectively. 

The displacement field inside the RUC can be expressed in two-scale representation as  

𝒖(𝒚) = 𝑬𝟎𝒙 + 𝒖̃(𝒚) (2) 

where 𝒚 represents the RUC local coordinates, the first term on the right side corresponds to the macroscopic 

contribution and 𝒖̃ is the periodic fluctuating displacement vector generated by the presence of the 

inhomogeneities. Here, 𝒖̃ is expanded in a Fourier series in the form [2] 

𝒖̃(𝒚) = ∑ 𝒖̂(𝝃)exp (𝑖𝝃 ∙ 𝒚)

±∞

𝝃

 (3) 

where 𝒖̂(𝝃) =
1

𝑈
∫ 𝒖̃(𝒚)exp (−𝑖

⬚

𝑈
𝝃 ∙ 𝒚)𝑑𝑈 and the components of the vector 𝝃 are defined by 𝜉𝑘 = 𝜋𝑛𝑘 𝑎𝑘⁄ , (𝑘 =

1, 2, 3), 2𝑎𝑘 indicating the RUC side dimensions (Fig. 1) and 𝑛𝑘 = 0, ±1, ±2, … ± ∞. It is worth remarking that 

𝝃 = 𝟎 must be excluded in the summation, because the constant displacement field is considered in the 

macroscopic contribution of Eq. (2). Here, the RUC volume is denoted by 𝑈. The RUC strain field can be derived 

from Eq. (2) in the form (𝒚) = 𝜺0 + 𝜺̃(𝒚), where 𝜺0 is the macroscopic strain vector related to the matrix 𝑬𝟎 and 

𝜺̃ is the fluctuating strain field corresponding to the displacement field 𝒖̃. The total strain field 𝜺̃ is related to the 

fluctuating strain fields 𝜺̃𝒓 (𝑟 = 1, 2, ⋯ 𝑁) generated by the inhomogeneities Ω𝑟, i.e. 

𝜺̃(𝒚) = ∑ 𝜺̃𝑟(𝒚)

𝑁

𝑟=1

 
(4) 

The generalization of the equivalent inclusion method consists in replacing each inhomogeneity Ω𝑟 by its 

corresponding eigenstrain field 𝜺𝑟
∗ (𝒙) imposed on the homogenized unit cell. Then, the actual repeating unit cell 

is substituted by an equivalent unit cell constituted by the matrix material subjected to the same boundary 

conditions and eigenstrain fields 𝜺𝑟
∗ (𝒙) corresponding to the inhomogeneities Ω𝑟, as shown in Fig. 1(b). The 

primary problem is to determine the volume-averaged eigenstrains 𝜺̅𝑟
∗  (𝑟 = 1, 2, ⋯ 𝑁) over the inclusion domains 

imposing the elastic equivalency between the original RUC and the homogenized RUC shown in Fig. 1. This 

equivalency is enforced by the following consistency conditions involving the equality of the local stress fields in 

the two systems: 
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𝑪𝑠 [𝜺0 + ∑ 𝜺̃𝒓(𝒚)

𝑁

𝑟=1

] = 𝑪 [𝜺0 + ∑ 𝜺̃𝒓(𝒚)

𝑁

𝑟=1

− 𝜺𝑠
∗(𝒚)] for 𝒚 ∈ Ω𝑠 (𝑠 = 1, 2, ⋯ 𝑁) (5) 

 

Similarly, the fluctuating strain vector can be expressed in Fourier series as 

𝜺̃(𝒚) = ∑ 𝜺̂(𝝃)exp (𝑖𝝃 ∙ 𝒚)

±∞

𝝃

 (6) 

where 𝜺̂(𝝃) =
1

𝑈
∫ 𝜺̃(𝒚)exp (−𝑖

⬚

𝑈
𝝃 ∙ 𝒚)𝑑𝑈. Applying the relation strain-displacement in Eq. (2) and using Eq. (6), 

results 𝜺̂(𝝃) = 𝑖𝑳𝜀(𝝃)𝒖̂(𝝃) with 𝑳𝜀(𝝃) representing a (6 × 3) matrix [8].  

The equilibrium equation of the stress field 𝝈(𝒚) in the RUC, neglecting the body forces, can be expressed 

in the form 𝛁 ∙ 𝝈(𝒚) = 𝟎, where 𝛁 represents the well-known differential del operator. Considering this 

equilibrium condition and the equivalent inclusion strategy shown in Fig. 1(b), results from Eq. (5) 

𝜺0 = −(𝑪𝑠 − 𝑪)−1𝑪𝜺𝑠
∗(𝒚) − ∑ 𝑺(𝝃)𝑪 [∑

1

𝑈
∫ 𝜺𝑟

∗ (𝒚′)
⬚

Ω𝑟

𝑁

𝑟=1

exp(−𝑖𝝃 ∙ 𝒚′) 𝑑Ω𝑟] exp(𝑖𝝃 ∙ 𝒚)

±∞

𝝃

 (7) 

for 𝑠 = 1,2, ⋯ 𝑁. Here, 𝑺(𝝃) =  𝑳𝜀(𝝃)[𝑳𝜎(𝝃)𝑪𝑳𝜀(𝝃)]−1𝑳𝜎(𝝃) with 𝑳𝜎(𝝃) = 𝑳𝜀(𝝃)𝑡.  

The solution to Eq. (7) is carried out through an approximate scheme that directly evaluates the average 

values of the eigenstrain fields, 𝜺̅𝑟
∗ , over the inclusion domains Ω𝑟. This can be justified because the used 

homogenization approach only requires the average values of the strain fields. In the present work, the 

straightforward approximate solution of Eq. (7) is obtained using an efficient and general strategy that consists in 

partitioning the domain Ω𝑟 of each inclusion into 𝑀𝑟 partitions Ω𝑟
(𝑗)

 (𝑗 = 1, 2, … 𝑀𝑟), inside which the variable 

eigenstrain field 𝜺𝑟
∗  is substituted by its average value 𝜺̅𝑟

∗(𝑗)
 defined by 

𝜺̅𝑟
∗(𝑗)

=
1

Ω𝑟
(𝑗)

∫ 𝜺𝑟
∗  (𝐲)𝑑Ω𝑟

(𝑗)
⬚

Ω𝑟
(𝑗)

 (8) 

As shown in the reference [8], this partition scheme is particularly important for the cases of composites with high 

volume fractions of inhomogeneities and strong contrasts between the properties of the constituent phases. 

Employing the mentioned partition scheme, Eq. (7) can be rewritten in the form 

𝑐𝑠
(𝑗)

𝜺0 = −𝑐𝑠
(𝑗)(𝑪𝑠 − 𝑪)−1𝑪𝜺̅𝑠

∗(𝑗)
− ∑

1

𝑈Ω𝑠

𝑁

𝑟=1

∑ ∑ 𝑺(𝝃)𝑪

±∞

𝝃

𝑀𝑟

𝑚=1

𝑔𝑟
(𝑚)

(−𝝃)𝑔𝑠
(𝑗)

(𝝃)𝜺̅𝑟
∗(𝑚)

 (9) 

where 𝑐𝑠
(𝑗)

= Ω𝑠
(𝑗)

Ω𝑠⁄  (𝑠 = 1, 2, … 𝑁) and 

𝑔𝑠
(𝑗)

(𝝃) = ∫ exp(𝑖𝝃 ∙ 𝒚) 𝑑Ω𝑠
(𝑗)

⬚

Ω𝑠
(𝑗)

 𝑔𝑟
(𝑚)

(−𝝃) = ∫ exp(−𝑖𝝃 ∙ 𝒚) 𝑑Ω𝑟
(𝑚)

⬚

Ω𝑟
(𝑚)

 (10) 

It is observed that Eq. (9) corresponds to a system of 6𝑛 linear equations with 6𝑛 unknowns, which are the 

components of 𝜺̅𝑟
∗(𝑚)

 of each partition Ω𝑟
(𝑚)

 and 𝑛 = ∑ 𝑀𝑟
𝑁
𝑟=1 . After the solution of these system of equations, the 

average eigenstrain vector for the 𝑟-th inclusion, 𝜺̅𝑟
∗ , can be readily obtained by the summation 

𝜺̅𝑟
∗ = ∑ 𝑐𝑟

(𝑚)
𝜺̅𝑟

∗(𝑚)

𝑀𝑟

𝑚=1

 (11) 

with 𝑐𝑟
(𝑚)

= Ω𝑟
(𝑚)

Ω𝑟⁄ . For computation convenience, the system of equations (9) can be expressed in the compact 

form  

                         𝜺̅∗ = 𝑳−1𝑭𝜺0                                                                          (12) 

where  𝜺̅∗ = [𝜺̅
1

∗(1)
  𝜺̅

1

∗(2)
… 𝜺̅1

∗(𝑀1)
, 𝜺̅2

∗(1)
  𝜺̅2

∗(2)
… 𝜺̅2

∗(𝑀2)
, … 𝜺̅𝑁

∗(1)
  𝜺̅𝑁

∗(2)
… 𝜺̅𝑁

∗(𝑀𝑁)
]

(6×6𝑛)

𝑡

, 𝑭 = [𝑭1
𝑡   𝑭2

𝑡 … 𝑭𝑁
𝑡 ](6×6𝑛)

𝑡 ,  

𝑭𝑟 = [𝑐𝑟
(1)

𝑰  𝑐𝑟
(2)

𝑰 … 𝑐𝑟
(𝑀𝑟)

𝑰]
(6×6𝑀𝑟)

𝑡
 and 𝑳 is a (6𝑛 × 6𝑛) matrix with components 
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𝑳𝑖𝑗
(𝑟,𝑠)

= −𝑐𝑖
(𝑟)(𝑪𝑟 − 𝑪)−1𝑪𝛿𝑖𝑗𝛿𝑟𝑠 −

1

𝑈Ω𝑟
∑ 𝑺(𝝃)𝑪𝑔𝑗

(𝑠)(−𝝃)𝑔𝑖
(𝑟)(𝝃)

±∞

𝝃

 (13) 

(𝑟, 𝑠 = 1, 2, ⋯ 𝑁;  𝑖 = 1, 2⋯ 𝑀𝑟;  𝑗 = 1, 2, ⋯ 𝑀𝑠). 𝛿𝑖𝑗 and 𝛿𝑟𝑠 mean the Kronecker delta, 𝑰 indicates the (6 × 6) 

identity matrix and the superscript t stands for the transpose of a matrix. It is observed from Eq. (12) that the 

average eigenstrain vector of the 𝑟-th inclusion 𝜺̅𝑟
∗  can be directly related to the macroscopic strain vector 𝜺0 in the 

form                                         

𝜺̅𝑟
∗ = 𝑫𝑟𝜺𝟎 (14) 

where 𝑫𝑟 is a submatrix readily obtained by the product 𝑳−1𝑭. See Ref. [8] for more details. 

 

 

 

 

 

 

 

Figure 1. Generalized equivalent inclusion method; (a) Repeating unit cell with N inhomogeneities; (b) 

Homogenized unit cell embedding inclusions subjected to the eigenstrain fields. 

2.2 Effective elastic stiffness tensor of multiphase composites  

If 𝑪 represents the effective stiffness matrix of the material, the constitutive relation of the homogenized 

composite is defined in the form 𝝈𝑈 = 𝑪𝜺𝑈, where 𝜺̅𝑈 and 𝝈̅𝑈 are the volume-averaged strain and volume-averaged 

stress of the RUC. It is noticed that 𝜺𝑈 = 𝜺0 by the average strain theorem [2]. Considering the equivalent inclusion 

method (Section 2.1)  

𝝈𝑈 =
1

𝑈
∫ 𝑪 (𝜺𝟎 + 𝜺̃(𝒚) − ∑ 𝜺𝑟

∗ (𝒚)

𝑁

𝑟=1

) 𝑑𝑈 = 𝑪 (𝜺𝟎 − ∑ 𝑐𝑟𝜺̅𝑟
∗

𝑁

𝑟=1

)
⬚

𝑈

 
(15) 

where 𝑐𝑟 = Ω𝑟 𝑈⁄  indicates the volume fraction of the 𝑟-th inhomogeneity in the RUC. Now, introducing (14) into 

(15), the following relation is obtained for the effective elastic stiffness matrix of the composite: 

𝑪̅ = 𝑪 (𝑰 − ∑ 𝑐𝑟𝑫𝑟

𝑁

𝑟=1

) 
(16) 

It is worth mentioning that the effective stiffness matrix of the composite is readily generated when the 

matrices 𝑫𝑟 are known and, for this, the assemblage of the matrix 𝑳 plays a crucial role. The determination of the 

components of this matrix depends on the integrals of Eq. (10), which are evaluated over the subdomains of the 

inclusion partitions. In the present work, these integrals are computed by an efficient approach described in [8].  

3  Numerical examples  

3.1 Composites reinforced by unidirectional continuous coated fibers 

Initially, the present micromechanical model is used to determine the macroscopic elastic properties of a 

composite constituted by an isotropic epoxy matrix reinforced by unidirectional long glass fibers distributed in a 

2𝑎2 

𝑦3 

𝑦1 

2𝑎3 

2𝑎1 

Ω2 

Ω𝑚 

Ω𝑁 

Ω𝑠 

Ω𝑟 

Ω1 

𝑦2 
𝜺𝑟

∗  

𝜺𝑚
∗  

𝜺𝑁
∗  

𝜺𝑠
∗ 

𝜺2
∗  

𝜺1
∗  

2𝑎2 

𝑦3 

𝑦1 

2𝑎3 

2𝑎1 

𝑦2 

(a) (b) 
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periodic hexagonal array along the 𝑦1 direction. It is assumed the presence of an interphase layer (third phase) 

surrounding each fiber, as shown in Fig. 2. The Young’s moduli and Poisson’s ratios of the fibers and matrix are, 

respectively, 𝐸𝑓 = 84 𝐺𝑃𝑎, 𝜈𝑓 = 0.22 and 𝐸𝑚 = 4 𝐺𝑃𝑎, 𝜈𝑚 = 0.34. The fibers have radius 𝑟𝑓 = 8.5 𝜇𝑚 and 

volume fraction 𝑐𝑓 = 50%. The Young’s modulus of the interphase material (𝐸𝑖) is taken in a range between 4 𝐺𝑃𝑎 

and 12 𝐺𝑃𝑎, whereas its Poisson’s ratio is 𝜈𝑖 = 0.34. The interphase thickness is assumed as 𝑡𝑖 = 1 𝜇𝑚. Table 1 

shows the results generated by the present approach for the effective in-plane Young’s modulus 𝐸2
𝑒𝑓𝑓

= 𝐸3
𝑒𝑓𝑓

 and 

shear modulus 𝐺23
𝑒𝑓𝑓

, as well as for the effective out-of-plane shear modulus 𝐺12
𝑒𝑓𝑓

= 𝐺13
𝑒𝑓𝑓

, normalized by the 

corresponding matrix properties, considering five different interphase moduli. For comparison, Tab. 1 also 

presents the predictions obtained by the finite-element model (PMH) [9] and the elasticity-based homogenization 

theory LEHT (Locally Exact Homogenization Theory) [10]. As observed, the results generated by the present 

approach are in very good agreement with those obtained by both the finite-element calculations and the elasticity-

based theory LEHT. This example shows that the present approach is capable of providing results with a quality 

of accuracy similar to that corresponding to the predictions of finite-element method, even using a scheme with 

few inclusion partitions. 

 

 

 

 

 

 

Fig. 2. Repeating unit cells for periodic composite reinforced by continuous fibers with interphase layers and 

different arrays. 

Table 1. Effective elastic moduli for the composite with continuous coated fibers arranged in a hexagonal array. 

𝐸𝑖 

(𝐺𝑃𝑎) 

𝐸2

𝑒𝑓𝑓
𝐸𝑚⁄  𝐺23

𝑒𝑓𝑓
𝐺𝑚⁄  𝐺12

𝑒𝑓𝑓
𝐺𝑚⁄  

PMH LEHT Present PMH LEHT Present PMH LEHT Present 

4 2.6887 2.6636 2.6623 2.5495 2.5195 2.5182 2.7126 2.6362 2.7001 

6 2.9112 2.9255 2.9199 2.7751 2.7840 2.7770 2.9367 2.9618 2.9630 

8 3.0425 3.0841 3.0767 2.9108 2.9474 2.9379 3.0654 3.1181 3.1188 

10 - - 3.1827 - - 3.0483 - - 3.2221 

12 3.1916 3.2677 3.2595 3.0667 3.1393 3.1289 3.2083 3.2480 3.2959 

The second example aims to show the ability of the present approach for evaluating the effective elastic 

moduli of periodic composites reinforced by fibers with very thin interphase layer and wide range of fiber volume 

fraction. For this case, it is considered a composite material reinforced with unidirectional fibers distributed in a 

square array, as shown in Fig. 2. The elastic moduli of the fiber, matrix and interphase are, respectively: 𝐸𝑓 =

24 𝐺𝑃𝑎, 𝜈𝑓 = 0.20; 𝐸𝑚 = 2.7 𝐺𝑃𝑎, 𝜈𝑚 = 0.35; and 𝐸𝑖 = 3.03 𝐺𝑃𝑎, 𝜈𝑖 = 0.50, as found in [11]. The interphase 

thickness is equal to 𝑡 = 0.001 and the square RUC has a unit side length, leading to a maximum geometrically 

possible fiber volume fraction 𝑐𝑓,𝑚𝑎𝑥 ≈ 78%. Table 2 shows the results of the normalized effective transverse 

shear modulus 𝐺23

𝑒𝑓𝑓
𝐺𝑚⁄  provided by the present approach, the LEHT [10] and an analytical three-phase model 

proposed in [11], for fiber volume fraction 𝑐𝑓 ranging from 10% to 75%. Considering the wide range of the fiber 

volume fraction, as well as the very thin interphase layer, the homogenized elastic properties of that composite 

have been investigated by the present approach employing different partition schemes.  

 

 

𝑦3 

𝑦2 

𝑦3 

𝑦2 

𝐻𝑒𝑥𝑎𝑔𝑜𝑛𝑎𝑙 𝑎𝑟𝑟𝑎𝑦 

𝑅𝑈𝐶 

𝑅𝑈𝐶 

𝑆𝑞𝑢𝑎𝑟𝑒 𝑎𝑟𝑟𝑎𝑦 
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Table 2. Values of 𝐺23

𝑒𝑓𝑓
𝐺𝑚⁄  for the unidirectional composite with very thin interphase. 
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3.2 Hybrid composite reinforced by unidirectional continuous different fibers 

The next example consists of a hybrid composite with a continuous isotropic matrix reinforced by a hexagonal 

array of unidirectional long fibers made of two different materials. The composite microstructure is characterized 

by the rectangular RUC shown in Fig. 3. The elastic moduli of the matrix and fibers are given in Tab. 3. All the 

fibers are assumed to have the same size. This composite has been analyzed by [12] using polarization 

approximations for the effective elastic moduli of multicomponent matrix composite, which are deduced from 

three-point correlation bounds based on minimum energy principles and Hashin–Shtrikman polarization trial 

fields. Finite-element predictions are also presented in [12] for comparison with the analytical approximations. 

The results provided by the present approach for the homogenized bulk (𝐾𝑒𝑓𝑓) and transverse shear (𝜇𝑒𝑓𝑓) moduli 

are shown in Fig. 4 in function of the total fiber volume fraction 𝑐𝑓 = 𝑐𝑓1 + 𝑐𝑓2, with 2𝑐𝑓1 = 𝑐𝑓2. Here, 𝑐𝑓𝑖 denotes 

the volume fraction of the fibers constituted by the material 𝑖. As can be seen in Fig. 4, the results generated by 

the present approach for those effective elastic moduli are in excellent agreement with the finite-element 

predictions in the entire wide range of reinforcement volume fractions. Then, considering the quality of those 

predictions and the computational efficiency, the proposal approach demonstrates be a competitive alternative to 

the finite-element technique for homogenization of hybrid periodic composites. 

 

 

Figure 3. Repeating unit cell representative of the hybrid composite reinforced by two different types of 

continuous unidirectional fibers in a hexagonal array. 

 

Figure 4. Effective elastic bulk and transverse shear moduli of the hybrid composite.  
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Table 3. Elastic moduli of the matrix and fibers of the hybrid composite [12]. 

Phase Bulk modulus (𝐾)  Shear modulus (𝜇) 

Matrix 20  12 

Fiber 1 (black) 4  2 

Fiber 2 (gray) 1  0.4 

4  Conclusions 

An eigenstrain-based model was developed to predict the effective elastic properties of multiphase 

composites with periodic microstructures presenting an arbitrary number of phases and geometric shapes of the 

inhomogeneities. The model is capable of accurately evaluating the homogenized elastic properties irrespective of 

the volume fractions and contrast between the properties of the constituent phases. Comparisons with results 

obtained from different analytical models and finite element-based homogenization techniques showed that the 

proposed approach accurately evaluates the homogenized elastic moduli of periodic multiphase composites with 

various microstructural architectures.  
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