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Abstract. Laminated composite materials have become increasingly prevalent in various engineering 

applications due to their remarkable stiffness/mass ratio and ease of manufacture. However, the classical theory 

fails to address certain limitations in modeling laminated composite beams, such as the absence of shear stress at 

the top and bottom edges, the non-uniform distribution of the shear stress field, and the zigzag effect in the field 

axial displacement. This study presents a newly proposed unified high-order quasi-3D kinematic model, which is 

coupled with a novel zigzag function to overcome the limitations encountered when it uses classical beam 

theory. This approach eliminates the need for correction factors required in Timoshenko beam theory and 

accurately captures the cross-section warping and transverse normal deformation resulting from the incorporated 

quasi-3D effect. Finally, the results were validated by comparing the displacement fields, normal stresses, 

transverse normal stress, and shear stress with reference values in the literature. 
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1  Introduction 

Composite materials are widely used due to their high stiffness-to-weight ratio, ease of manufacturing and 

structural efficiency (Chen and Huang [1]). However, the increasing use of laminated composites presents 

challenges in the analysis of structures, especially due to the zigzag phenomenon in longitudinal displacements 

caused by the difference in stiffness between layers, requiring a more complex analysis (Gherlone and Marco 

[2]). 

The Euler-Bernoulli beam theory does not consider transverse shear, while the Tymoshenko beam theory 

includes it, but needs correction factors for the shear stress (Gherlone and Marco [2]). Given this, high-order 

theories were developed to correctly describe the shear stress distribution without these factors (Gherlone and 

Marco [2]). 

Although these theories are efficient, they can be inaccurate for laminated beams, as they do not consider 

the zigzag phenomenon in longitudinal displacement, applying only to an Equivalent Cross Section (ELS) 

(Prado Leite and da Rocha [3]). An alternative to this limitation is the Layerwise Theory, as it considers each 

layer separately, providing precision, but with high computational cost due to the dependence of the quantity of 

unknowns on the number of layers (Prado Leite and da Rocha [3], Pathan and Singh [4]). 
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As an alternative to the limitations presented, the Zigzag Theory emerges, which incorporates the zigzag 

phenomenon into the ESL theory without losing precision or increasing computational cost. This paper proposes 

a new zigzag function coupled to a unified formulation for beams with a quasi-3D effect, comparing it with 

existing formulations and referring to the elasticity theory results by Pagano [5]. 

2  Mathematical model 

2.1 Definitions 

Let be a beam of length L , height h  and thickness b  under the variable distributed loading zQ , as shown 

in Figure 1. The superscript T denotes the position of the load on the upper surface of the beam and  0xT , 

 xT L ,  0zT  and  zT L  are surface forces. The beam is composed of N orthotropic layers perfectly glued 

together, denoted by the superscript (k). 

 

Figure 1. Geometric properties and applied forces of the laminated beam. 

2.2 Kinematics 

The displacement field proposed in eqs. (1) and (2) incorporate the quasi-3D effect, the zigzag effect, and 

the cross-section warping: 
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where the subscripted comma notation indicates differentiation with respect to the variable(s) to its right, and 
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The functions  0u x  and  0w x represent, respectively, the axial and the transverse displacements along 

the beam's centroidal axis. The function  f z  incorporates the high-order theories for beams. The variable 

0, ( )xw x  corresponds to the derivative of the elastic line and  S x  represents the rotation of the normal section 

to the midplane due to shear. The function  g z  is the derivative of  f z , satisfying the boundaries conditions 

of upper and lower surfaces free of transverse shear stress. The 
   k
zz z is the zigzag function and ( )x  is 

related to the amplitude of the zigzag effect along the length of the beam. The parameter  z x  is associated 

with the quasi-3D effect. 

Considering small rotations and displacements in the kinematic model, we have the deformation fields 

shown in eqs. (4)-(6): 

 
     ( )

, 1, 2 2,1[ ( )] ( ) [ ( )] ( )
kk

x x x x xxu T z d x T z d x    , (4) 
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  , , 2[ ( )] ( )z z z g zu T z d x   , (5) 

          , . 1 2 2,1,[ ( )] ( ) [ ( )] ( )
kk k

xz x z z x xzu u T z d x T z d x     , (6) 

where 2[ ( )] [0 ( )]T z g z . 

Considering orthotropic linear elastic material with fiber insertion, the constitutive model for the k-th layer 

is given by: 

 
       
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55 551 2 2,1,[ ( )] ( ) [ ( )] ( )
k k

kk
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where,    ,
k

x x z ,    ,
k

z x z  and    ,
k

xz x z represent the normal, the transverse and the shear components of 

the stress vector; the 
 k

ijC are the stiffness constants of the material (Nguyen et al.[6]) and    ,
k

x x z ,  ,z x z  

and    ,
k

xz x z  represent the normal, the transverse and the shear components of the strain vector. 

Table 1 shows the zigzag functions present in the literature and the proposed model applied to the high-

order beam model developed in this paper. 

Table 1. Zigzag functions. 
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2.3 Governing equations 

To obtain the equilibrium equations and their boundary conditions, the principle of minimum energy was 

used by equating to zero the first variation of the total energy functional. This functional is given by the internal 

deformation energy, U , and the potential energy due to external forces, V , providing the eq. (10): 

 0U V      . (10) 

The first variation of the internal energy and the potential energy are given by eqs. (11) and (12), 

respectively, with    0, , 0,
2 2

b b
L h

 
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 
. 

  ( ) ( ) ( ) ( ) ( ) ( )k k k k k k
x x z z xz xzU dV      



   , (11) 
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Using the integration by parts technique, and the fundamental lemma of variational calculus, it is possible 

to obtain the Euler Equation, which provides the restriction required for the domain equation (eq. (13)) and its 

boundary conditions (eq. (14)): 
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Replacing eqs. (7)-(9) in eq. (15) and then substituting in eq. (13), we obtain the domain equation given by 

eq. (16): 
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where 
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2.4 Analytical solution 

The Navier procedure is used to validate the proposed formulation for a simply supported beam, such that 

the unknown functions are represented by the Fourier Series given by eq. (18): 
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with /n n L  . 

Replacing eq. (18) in eq. (3), we have: 
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Then, substituting eq. (19) in eq. (16), we obtain: 
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where 
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3  Results and discussion 

A comparative analysis was carried out using Pagano [5] as the benchmark solution for comparison. In this 

analysis, the accuracy of the results for longitudinal displacement and shear stress for both, regular and non-

regular layers (2-1-1) was calculated. Additionally, the effect on the results when the shear shape function and 

the zigzag function in high-order kinematics are varied was analyzed. After analyzing the accuracy when the 

shear shape function and the zigzag function are varied, the behavior of the results was observed when 

considering or not the quasi-3D effect. The non-dimensionalized equations were used: 

 

( ) ( )
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0 0
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( , ) , ( , ) .

k k
x yk k xz
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u x z E x z
U x z x z

bhq q


   (23) 

The relative errors for this formulation are presented in Tabs. 2 and 3. The abbreviations Red and Sol, in 

those Tables, refer to the functions, adapted here, to represent the proposal in Reddy [9] and Soldatos [10], 

respectively. The abbreviations Mur, Zhen, Sine and Hiper refer, respectively, to the zigzag functions of 

Murakami [7], Zhen [8], Leite and Da Rocha [3] and the present proposed model. The errors were calculated 

based on the WAPE (Weighted Absolute Percentage Error) metric, given by eq. (24): 

 
1

1

(%) 100

n

j jj

n

jj

x X
WAPE

X











. (24) 

Table 2. WAPE for axial displacements,  ,aU L z . 

Analysis 

type 
Settings 

Red 

+Mur 

Red 

+Zhen 

Red 

+Sine 

Red 

+Hiper 

Sol 

+Mur 

Sol 

+Zhen 

Sol  

+Sine 

Sol 

+Hiper 

With quasi-

3D effect 

1-1-1 11,84% 7,41% 7,15% 4,09% 11,78% 7,27% 7,02% 3,91% 

2-1-1 26,80% 16,25% 14,40% 10,62% 26,52% 15,81% 13,97% 10,15% 

No quasi-

3D effect 

1-1-1 11,79% 7,14% 7,12% 4,28% 11,73% 7,00% 7,01% 4,19% 

2-1-1 26,24% 15,34% 13,53% 10,05% 25,97% 14,92% 13,13% 9,64% 
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Table 3. WAPE for shear stress by equilibrium equation,  0,xza z . 

Analysis 

type 
Settings 

Red 

+Mur 

Red 

+Zhen 

Red 

+Sine 

Red 

+Hiper 

Sol 

+Mur 

Sol 

+Zhen 

Sol  

+Sine 

Sol 

+Hiper 

With quasi-

3D effect 

1-1-1 1,44% 2,11% 1,66% 0,93% 1,43% 2,07% 1,61% 0,85% 

2-1-1 5,31% 3,06% 2,86% 2,38% 5,28% 3,01% 2,82% 2,32% 

No quasi-

3D effect 

1-1-1 1,28% 1,91% 1,46% 0,73% 1,26% 1,87% 1,42% 0,66% 

2-1-1 5,40% 2,87% 2,68% 2,20% 5,37% 2,83% 2,64% 2,15% 

 

From Tabs. 2 and 3, it is observed that the Soldatos shear function [10], together with the hyperbolic-

exponential zigzag function produced the best results in all response fields, guaranteeing a lower error. This 

conclusion is corroborated by the qualitative analysis presented in Figs. 2 and 3. In these figures, a stacking in 

the 1-1-1 configuration is considered, where the image on the left side displays the result of the proposed model 

and the one on the right side displays the model by Pagano [5]. 

The model with non-regular height layers maintains a behavior similar to that of regular layers, although it 

presents larger errors when compared to regular layers. This discrepancy is more pronounced for axial 

displacement. 

Comparing the errors between the analyses with and without the quasi-3D effect, it is clear that the 

difference among the two types of analyzes was small. For regular layers, the model that considers the quasi-3D 

effect presented lower values for axial displacement in the WAPE metric. However, for the shear stress fields, 

the model without the quasi-3D effect presented slightly lower values in the WAPE metric. It appears that the 

consideration or not of the quasi-3D effect did not cause significant changes in the example analyzed by the 

equilibrium equation represented in Figs. 2 and 3. Additional results, not presented here, were obtained using the 

constitutive model. These results indicate that accounting for the quasi-3D effect enhances the accuracy of the 

stress field predictions. 

 
Figure 2. Variation of axial displacement for the 1-1-1 configuration: Sol+Hiper model on the left and model by 

Pagano [5] on the right. 

 

 
 

Figure 3. Variation of shear stress by equilibrium equation for the 1-1-1 configuration: Sol+Hiper model on the 

left and model by Pagano [5] on the right. 
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4  Conclusions 

Analysis of the results reveals that the proposed model, combining the high-order beam theory of Soldatos 

[10] and the high-order zigzag function developed in this paper, called Sol+Hiper, provides more accurate results 

in all fields. These results were compared with those obtained by the elasticity theory proposed in Pagano [5] and 

with other approximate models from the literature, suggesting that the hyperbolic-exponential zigzag function, 

when combined with the Soldatos shape function, offers a more accurate representation beam behavior, resulting 

in displacements and stresses fields closer to the reference values. 

For displacement fields with regular layer heights, the formulation that considers the quasi-3D effect 

showed smaller errors when using the hyperbolic-exponential zigzag function, while in other cases, the 

formulation without the quasi-3D effect had smaller errors. However, the difference among the two types of 

analysis was not significant, indicating that the quasi-3D effect is not a determining factor for the accuracy of the 

model in this context. 

The model with non-regular height layers, although maintaining a behavior similar to that of regular layers, 

presented larger errors, especially in the axial displacement. This points to a loss of precision when there is 

variation in layer heights. The qualitative results indicate good accuracy of the Sol+Hiper model along the beam 

for regular layer configuration. 
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