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Abstract. Analytical formulae are derived for the effective coefficients of linear elastic second-order laminate 
composite materials made of any finite number of linear elastic first-order layers. Imperfect contact conditions are 
considered at the interfaces, and small strains are assumed at the micro and macro scales. The “micro-macro” 
homogenization procedure used here is reported in Yang et al. [4] wherein only numerical studies are presented. 
Asymptotic homogenization method results at the micro-scale level are combined with the macro-scale parameters 
based on the equivalence of the stored energies on the periodic cell (i.e., the energy-averaging theorem known as 
the Hill-Mandel condition).  Some comparisons are considered for validation. To the best of our knowledge, the 
fully analytical application of this methodology to the case of laminate media has not been reported previously, 
that is, with the analytical solution of the local problems. The formulas obtained could be useful to control 
numerical codes in more complex periodic cells. 

Keywords: asymptotic homogenization method, higher-order effective coefficients, linear elastic second-order 
laminate composite, imperfect contact. 

1  Introduction 

The problem is to determine the effective coefficients of a 1D linear elastic second-order homogeneous 
material (Mindlin [1]) as a function of the effective coefficient of a 1D linear elastic first-order heterogeneous 
material at the “micro-scale”. The solution combines asymptotic homogenization method results at the micro-scale 
level by considering the equivalence of the energy at macro- and micro-scales within a periodic cell (Hill [2]). The 
“micro-macro” method was first reported by Li [3]. We follow the variant developed by Yang et al. [4,5], where 
the methodology of Li [3] is combined with results from the asymptotic homogenization method (Pobedrya [6]). 
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2  Brief description of a methodology relating the “micro” and “macro” fields 

We will base our calculations on the relations derived from the methodology of Yang et al. [4,5]. Such 
methodology assumes relationships between the “micro” fields of a linear elastic heterogeneous periodic medium 
of known elastic properties with mechanical displacement defined by 

 
(0) 2 (0)

(0) (1) 2 (2) 1
2( , ) ( ) ( ) ( ) , ( ),m cdu d uu x u x N y N y y x x

dx dx
ε ε ε ε −+ + = −  (1) 

where cx  is the geometric center of the periodic cell (0, )Y l= , ε  is the reciprocal of the number of times 
the periodic cell is replicated in the elastic composite bar. The local functions (1) ( )N y  and (2) ( )N y are the null-

average l -periodic solutions of the following equations on Y −Γ  being { }1, , py y YΓ = ⊂  the set of point of 

discontinuity of ( )c y  and p  is the number of laminas: 
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( ) ( ) 0,d dNc y c y
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+ = 
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 (3) 

We consider the following imperfect conditions on each point ( 1, , )qy q p∈Γ = … : 
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where ( )qK is the imperfection constant at qy ∈Γ and 
 

⋅
 
denotes the jump of the enclosed function across the 

points of .Γ  

On the other hand, the energy at the “macro” level (the homogenized medium) is giving by  

 
2 22 2

2 2

1 1( ) ,
2 2

M M M M
M M M Mdu du d u d ux C G D

dx dx dx dx
ω

   
= + +   

   
 (6) 

where , ,M M MC G D  are the second-order effective coefficients to be determined. The energy at the “micro” level 
is defined by  

 
2

1( ) ( ) .
2

m
m dux c y

dx
ω

 
=  

 
 (7) 

The “micro-macro” methodology that we will use was reported for the first time in Li [3]. It is based on a 
series of hypotheses, some of which we summarize below.  
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(i) The fundamental hypothesis consists of assuming that the deformation energy densities coincide, on a 
representative volume element, of the “micro” and “macro” media, that is:  

 
2 2 22 2

2 2

1 ( , ) 1 1( , ) ( ) ( ) ,
2 2 2

m M M M M
m M M M Mdu x du du d u d ux x c y C G D

dx dx dx dx dx
εω ε ω

     
= ⇒ = + +     

     
 (8) 

where 
0

1( , ) ( , ) .
l

x y x y dy
l

ϕ ϕ= ∫    

(ii) It is considered that the “macro” displacements and their derivatives coincide with their corresponding ones at 
the “micro” level. Then, as stated by Yang et al. [5], as (0)u  depends only on the macroscopic coordinates, from 
eq. (8), by comparing coefficients, we obtain that it may be chosen as the macroscopic displacement 

(0) ( ) ( )Mu x u x= . In particular,   

 
(0) 2 (0) 2

(0)
2 2( ) ( ), , .

M M
M du du d u d uu x u x

dx dx dx dx
= = =  (9) 

 (iii) From (9) we obtain that  

 
(0) 2 (0) 2

(0)
2 2( ) ( ) , , .

M M
M du du d u d uu x u x

dx dx dx dx
= = =  (10)

           
 

(iv) In addition, taking the Taylor series of  Mu  around the geometric center of the periodic cell, the following 
results of interest in the connection are concluded:

 

 
2 2 2 2

2 2 2 2( ), ( ), ( ) .
M M M M M M M M

c c cdu du d u du du d u d u d ux x x x
dx dx dx dxdx dx dx dx

= + − = = =  (11) 

As a consequence, the “macro” effective energy density is of the form 

 ( )
2 22 2

2 2

1( ) ,
2

M M M M
M M M M Mdu du d u d ux C G C I D

dx dx dx dx
ω

 
 = + + +
  

 (12) 

where 

 ( )2
.cI x x= −  (13) 

Now, we will explain the dependence of the effective coefficients , ,M M MC G D  of the “macro” medium 
(homogenized material) with respect to the local functions (1) ( )N y  and (2) ( )N y  appearing in eq. (1). 
Differentiating in eq. (1) and using the chain rule, we obtain   

 
(1) (0) (2) 2 (0)

(1)
21 ( ) .

mdu dN du dN d uN y
dx dy dx dy dx

ε
   

∼ + + +   
   

 (14) 

Substituting eq. (9) into eq. (14), we have 

 
(1) (2) 2

(1)
21 ( ) .

m M Mdu dN du dN d uN y
dx dy dx dy dx

ε
   

∼ + + +   
   

 (15) 
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Substituting eq. (10) into eq. (15), results 

 
(1) 2 (2) 2

(1)
2 21 ( ) ( ) .

m M M M
cdu dN du d u dN d ux x N y

dx dy dx dydx dx
ε

    
∼ + + − + +         

 (16) 

Substituting 1( )cy x xε −= −  into eq. (16), we obtain 

 
(1) (1) (2) 2

(1)
21 1 ( ) .

m M Mdu dN du dN dN d uy N y
dx dy dx dy dy dx

ε
      

∼ + + + + +      
      

 (17) 

Introducing the following notations 

 
(1) (2) (1) (2)

(1) (1)( ) 1 , ( ) ( ) ( ) 1 ( ) ,dN dN dN dNL y M y yL y N y y N y
dy dy dy dy

     
= + = + + = + + +     

     
 (18) 

so eq. (17) takes the form 

 
2

2( ) ( ) .
m M Mdu du d uL y M y

dx dx dx
ε∼ +  (19) 

Now, we can derive the deformation energy at the “micro” level, as follows: 
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du du d u d uc y L y c y L y M y c y M y
dx dx dx dx

εω ε

ε ε

εε

 
=  

 
   

∼ + +   
   

= + +

  (20) 

where 

 2 2 2( ) ( ) , 2 ( ) ( ) ( ) , ( ) ( ) .C c y L y G c y L y M y D c y M yε ε= = =  (21) 

Taking into account eq. (18), we can see that the effective coefficients , ,C G D  depend on the small 
geometrical parameter ε  and the solution of the local problems previously defined via the asymptotic 
homogenization method. With such considerations, from eqs. (12)-(13) and eqs. (20)-(21), the “macro” effective 
coefficients , ,M M MC G D are given by 

 ( )2 2 2, , , .M M M cC C G G D D C I I x x yε= = = − = − =  (22) 

Remark 1: In order to obtain the final formulas for the effective coefficients it is necessary to solve the two 
recurrent local problems stated by eqs. (2)-(5). The solutions to such problems can be found, as a particular case, 
in Appendix A of Chaki and Bravo-Castillero [7], and are given by 

 ( ) ( ) ( ) ( )
(2)1 1(1) ( ) 1 ( ) 1

0 0
1 1

( ) ( ) 1 ( ) 1 ,
p py yq q

K K K K
q q

dNN y c K c c d c K c c d
dy

η η η η
− −− −

= =

= + − − + − = −∑ ∑∫ ∫  (23) 
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and the effective coefficient of the first order elastic medium with imperfect contact is obtained as 

 ( )
11( ) 1

1
( ) .

p
q

K
q

c K c y
−− −

=

 = +  ∑  (24) 

Then, the functions ( )L y  and ( )M y  introduced in eq. (18) take the form      

 ( ) 1 1( ) , ( ) ( ) .K KL y c y c M y yc y c− −= =  (25) 

Finally, substituting eq. (25) into eq. (21) and using eq. (24), we obtain: 

 ( ) ( )21 2 2 1, 2 ( ) ,  ( ) 1 .M M M
K K K KC c G yc y c D c y c c yε ε− −= = = −  (26) 

3  Example 

In this section we will be compare eq. (26) with eqs. (42) and (43) of Li [3] for two different periodic cells 
for the particular case of perfect contact condition, that is when ( ) ,qK q→∞ ∀ , and 

11( )Kc c y c
−−

∞→ ≡ .  

First, we consider the matrix-inclusion-matrix periodic cell defined by 

 ( ) ( ) ( ) ( )2, 2 2, (1 ) 2 (1 ) 2, (1 ) 2 (1 ) 2, 2Y l l l l l l l lθ θ θ θ= − = − − − ∪ − − − ∪ −  (27) 

which is illustrated in Figure 1. 

 

Figure 1. Periodic cell for matrix-inclusion-matrix case. 
 
The matrix and inclusion constituents and the effective coefficient at the micro-level are, respectively, 

 
( ) ( )
( )

1, 2, (1 ) 2 (1 ) 2, 2 1( ) , .
, (1 ) 2, (1 ) 2 ,

m M

i mi

E y l l l l
c y C c E

E EE y l l

θ θ θ θ
θ θ

−

∞

∈ − − − ∪ −  −= ≡ = = +  ∈ − − −  
 (28) 

Then, 

 ( )
2 2

2 2 1 1 1( ) 1 (2 ),
12

M m i

m i

E
D c y c c y

E E
ε θ θ

ε θ−
∞ ∞

 
= − = − − 

 
 (29) 

being ,m lθ θ=  and (1 ) ,i lθ θ= − the matrix and inclusion volume fractions, respectively. For the particular case 
when 2 (1 ) (2 )ε θ θ= + −  from the above formula we obtain 

 
2 (1 ) 1 1 ,

12
m fM

m f

E
D

E E
θ θ θ  +

= − 
  

 (30) 

which coincides with eq. (42) of Li [3].  
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Following similar calculations, we obtain eq. (43) of Li [3] for the matrix-inclusion-matrix-inclusion-
matrix-inclusion-matrix periodic cell case as is illustrated in Figure 2. 

    

 
 

Figure 2. Periodic cell for matrix-inclusion-matrix-inclusion-matrix-inclusion-matrix case. 

4  Conclusions 

We study a well-established methodology to predict a linear infinitesimal elastic second-order homogenized 
material from periodic heterogeneous media whose constituents are linear infinitesimal elastic first-order 
materials. Imperfect contact condition of spring type as interfaces were considered. To the best of our knowledge, 
the fully analytical application of this methodology to the case of laminated media has not been reported 
previously, that is, with the analytical solution of the local problems. This methodology can be extended to three-
dimensional laminated media with any finite number of layers and imperfect contact at the interfaces. 
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