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Abstract. The escalating complexity of engineering challenges necessitates the utilization of increasingly 

efficient materials, often met through the adoption of composite materials as a viable solution. Concrete stands 

out as one of the most prevalent composite materials in civil engineering, evolving through alterations in its 

constituent components as researchers pursue enhanced durability, workability, and sustainability. However, 

traditional theories treating concrete as a homogenous isotropic material prove inadequate for predicting the 

mechanical properties of these innovative concretes, primarily due to the excessive costs associated with 

experimental analyses. To address this issue, the present contribution introduces the alternative approach of a 

high-order zigzag multilayer theory incorporating the asymptotic homogenization method. The variational 

formulation of a unified beam kinematics is used to carry out a multiscale analysis through the asymptotic 

expansion of the unknown variables. This methodology allows studying a beam composed of heterogeneous 

materials through its homogeneous equivalent with the same effective behavior. The findings of the 

methodology proposed here agree with well-established numerical and experimental formulations documented in 

the literature, even when employing a one-dimensional beam theory. 
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1  Introduction 

Composite material is the term given to the combination of two or more materials, at either macroscopic or 

microscopic levels, to form a new compound aimed at improving properties such as mechanical, thermal, 

acoustic, corrosion resistance, stiffness, color, weight, and fatigue life (Jones [1]). At the macro- and meso-

structural levels, composite materials generally consist of a matrix and some sorts of reinforcement, with various 

classifications including particle-reinforced composites, fiber-reinforced composites, porous composites, 

laminates, and laminates with oriented fibers (Vison and Sierakoswski [2]). It is notable that most materials 

found in nature are heterogeneous at some scale level. For instance, concrete is often modeled as a homogeneous 

and isotropic material, yet at the mesoscale, it can be differentiated by aggregate type, mortar, void content 

(including pores, cracks and voids from constituents debonding) and reinforcing fibers. At the microscale, there 

exists a variety of chemical components in cement influencing the final behavior of the mixture. Therefore, 

concrete is considered as a particle-reinforced composite material. 

In addition to laminates, the modeling of specific composite materials such as concrete is of utmost 
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importance, given its status as the most widely used material in civil construction globally, including in Brazil 

(Monteiro et al. [3]). Therefore, optimizing the composition of this material is crucial for structural performance. 

Another critical aspect is that cement production is a significant source of carbon dioxide emissions, contributing 

to 8% of total pollution (Monteiro et al. [3]). Consequently, research into alternative components for concrete, 

such as recycled demolition aggregates, alternative types of cement, additives, and natural fibers, has been 

gaining prominence in laboratory investigations (Cantero et al. [4]). The study of Figueiredo [5] illustrates the 

effect of adding metallic fibers to concrete, reducing stress concentrations, and thereby mitigating potential 

structural issues. 

This study proposes a methodology that combines the use of unified kinematics with higher-order beam and 

zigzag theories, along with the application of asymptotic homogenization methods to model heterogeneous 

problems exhibiting periodic or random characteristics. 

2  Mathematical development 

2.1 Problem statement 

Consider a beam contained in a three-dimensional Cartesian space ( , , )x y z , with length L , width b  and 

height h , which occupies the domain ( )/ 2, / 2 / 2, / 2 , ,0, b b h h x y zL     × − × − ∋       . The beam in question is 

laminated with constituents considered orthotropic in the material reference axes, having a volume V ; cross-

sectional area S ; longitudinal elasticity modules xE , zE  and yE ; shear modules xzG , zyG  and xyG ; Poisson 

coefficients xzv , zxv , xyv , yxv , zyv  and yzv . In the cross-sectional area, the height of each layer is identified 

by ( )2 kh , with 1,2 ,k N= …  indicating the number of the layer. The interface coordinates between each layer 

are ( )( 0,1,..., )iz i N= , with (0)z h=− , ( 1)Nz h+ =  e ( ) ( )
( )

1 2
i

i iz z h−= + , as presented in Fig. 1. 

 
 

Figure 1. Section characteristics of a generic laminated beam. 

2.2 Kinematics 

The displacement field defined below is suitable for laminated composite beams and proposed in a unified 

manner, that is, it encompasses any type of beam theory ( )f z , for shear distribution (Euler-Bernoulli theory in 

Sayyad [6], Timoshenko [7], Reddy [8], Kruszewski [9], Touratier [10], Soldatos [11], Karama et al. [12] and 

Akavci [13]), and any type of zigzag theory ( )( )k
zz zφ , for layer effects (for example, Murakami et al. [14], Tessler 

et al. [15], Zhen et al. [16], Prado Leite and Rocha [17,18]):  
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( ) ( )( , ) ( ) ( ) ( ) ( ) ( ),

( , ) ( ).

k k
x zz

z

dw
u x z u x z f z x z x

dx
u x z w x

φ φ ψ= − + +

=
  (1) 

In eq. (1), considering the Cartesian axes, xu and zu are the displacements of the beam along the x  and z  

axes, respectively. The functions u  and w  are, respectively, the axial and transverse displacements with respect 

to the beam's centroidal axis. The terms 
dw

dx
−  and φ  represent the angles of rotation due to bending and shear 

effects, respectively. The function ψ  represents the amplitude of the zigzag effect. The present work uses a 

linear elastic regime and considers small deformations and rotations; therefore, the deformation-displacement 

and stress-strain relationships are described by eq. (2) and eq. (3), respectively: 
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  (3) 

the elasticity matrix 
( )

11

k

Q  and 
( )

55

k

Q  are calculated as shown in the work of Vison and Sierakowski [2] for 

orthotropic composite materials. 

2.3 Energy functional 

Following Reddy [19], the mechanical equilibrium of a structure occurs when the first variation of the total 

energy functional T TU ΩΠ +=  is zero. Thus, the internal energy TU  from eq. (2) and (3) is presented in eq. 

(4) and the external energy TΩ , considering only longitudinally distributed transverse loads ( )q x , is shown in 

eq. (6).  
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where 
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( ) ( ) .

L

T q x w x dxΩ = ∫   (6) 

To achieve the commented equilibrium situation, based on eq. (4) and (6), the application of the first energy 

theorem can be summarized as: 
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The eq. (7) seeks to recognize the oscillating characteristics of the material's elastic properties and 

consequently its stiffness terms, therefore the unknown functions will also have oscillating responses. Consider 

ξ  as a small parameter indicating a basic length and the superscript ξ  indicates that the functions are rapidly 

oscillating in x , depending on a small parameter that relates a global or slow variable x  and a local or fast 

variable x . Knowing these oscillating characteristics of the functions and that X  is the period, it is possible 

applies the asymptotic homogenization method to deal with this type of functional. 

Asymptotic homogenization method 

To deal with this type of functional, it is possible to approximate microscale heterogeneities through periodic 

behavior, solving local problems related to a repetitive cell and determining equivalent homogeneous properties 

for the macroscopic scale, through the asymptotic homogenization method (AHM - Bakhvalov and Panasenko 

[20]). The fundamental idea of AHM is to look for a formal asymptotic solution (FAS) of the original problem 

(Equation 7) a two-scale expansion in asymptotic series in powers of ξ  for x  and /x x ξ= .  

By substituting FAS into the original problem, a recurrence of problems is obtained, from which the 

homogenized problem is determined (it is proved to be independent of x ), the effective coefficients and the 

local problems on the periodicity cell (element basic microstructural structure whose periodic replication 

reproduces the structure of the micro-heterogeneous medium). Finally, when ξ  tends to zero, the exact solution 

and the FAS of the original problem converge to the solution of the homogenized problem. From eq. (7), this 

process is done resulting in the homogenized functional HΠ  shown in eq. (8) and its effective coefficients in eq. 

(9): 
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where, 
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Now this functional can be solved with numerical techniques more easily because its coefficients are constant 

with respect to x  and no longer rapidly oscillating.  

2.4 Results and discussion 

To understand the behavior of the results generated by the AHM, a convergence analysis was carried out 

using a problem involving a beam with oscillating characteristics. A simply supported single-layer beam is 

considered, subjected to a load uniformly distributed along its length with magnitude  N/m( ) 1000q x =  and 

dimensions  m1L = ,  m0.1b =  and  m0.3h = . Using the shear distribution of Reddy [8] and without 

considering layer effects ( ( )( ) 0k
zz zφ = ), the problem was solved for the homogenized solution and four 

inhomogeneous solutions varying the small parameter (Fig. 2). Also, the types of oscillation that occur in the 

elastic characteristics of the beam are the Young modulus ( )( ) 210 25 2E x sin xξ π ξ= +  and 

( )( ) 80.77 10.42 2G x sin xξ π ξ= + . 
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Figure 2. Convergence towards the homogenized solution Hw  on maximum deflection of a beam with 

oscillating characteristics. 

It is observed that the smaller ξ (that is, the faster the oscillations of the material characteristics), the better 

the approximation of the solution Hw  the equivalent homogenized problem. In these cases, the homogenized 

formulation offers great advantages due to its simplicity and lower computational cost. Now, considering the 

layering effect, it is possible to approximate real rapidly oscillating behaviors. In Taj and Al-Zuhairi [21], a four-

point bending experiment was carried out for a concrete test piece with dimensions 450 150 150mm mm mm× × . 

Then, it is possible to use functions like ( )( ) ( )( ) ( )k k
aggregate mortar mortar

E x E E E sin T xξ π ξ= − +  and 

( )( ) ( )( ) ( )k k
aggregate mortar mortar

G x G G G sin T xξ π ξ= − +  to simulate the mortar-aggregate variation and change 

the ( )kT  value, providing a simulation of the randomness material distribution. Table 1 shows the results of a 10-

layer simulation, combining some high-order beam theories and zigzag functions. In this case, ( ) 16kT = for 

1,4,7,10k = , ( ) 24kT = for 2,5,8k = , and ( ) 12kT = for 3,6,9k = . 

Table 1. Results of maximum axial deformation ( ) 6, 102 2L hε ×  for the four-point bending of a concrete beam. 

Total force 

(N) 

Experimental 

[21] 

Numerical 

[21] 

Reddy [8] 

+ 

ZZsin [17] 

Reddy [8] 

+ 

ZZexp [18] 

Soldatos [11] 

+ 

ZZsin [17] 

Soldatos [11] 

+ 

ZZexp [18] 

1000 3.34 4.82 3.02 3.032 3.017 3.034 

5000 16.70 25.04 15.09 15.11 15.08 15.13 

12500 41.75 58.64 36.22 36.86 36.21 36.92 

 

It is noted that even though it is an approximation, the homogenization process combined with the multilayer 

theory allows two-dimensional problems to be modeled even with one-dimensional formulations, maintaining 

simplicity, and even so obtaining values comparable to the experimental ones in all combinations. All results 

using combinations of high-order theories were more accurate than the numerical result of Taj and Al-Zuhairi 

[21] using Euler-Bernoulli beam theory with finite elements. An alternative to approximate the randomness of 

the internal structure of concrete that can improve the results, consists of considering different representative 

volume elements with random microstructures as the periodic cell. Another important observation is that for 

layered problems with more different characteristics, the comparison of high-order theories with each other 

would be more relevant, as for problems like this the results are very similar. 

3  Conclusions 

Based on the analysis carried out, it is possible to conclude that the formulation of laminated beams using the 

asymptotic homogenization method has several applications in structural engineering, especially for materials 

with heterogeneities at different scales, through a simple approximation of a periodic behavior it is possible to 
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obtain results comparable to experimental ones. Furthermore, the convergence study illustrated that the 

application is consistent with what is expected from the mathematical homogenization method, that is, problems 

with rapidly oscillating characteristics are well-posed, including those that model the behavior of concrete.  
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