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Abstract. To the best of our knowledge, the few classical applications of Keller’s two-space method of non-
periodic asymptotic homogenization are related to the effective behavior of heterogeneous media in the context of
poroelasticity considering fluid flow and saturation. We believe that this is due to the alternative common approach
of approximating random or non-periodic microstructures via the periodic replication of a representative volume
element, as periodic structures are, generally speaking, much more tractable mathematically and computationally.
However, more than 40 years later, a number of preliminary results of applications of the two-space method has
arisen on various areas, namely, effective behavior of composite or functionally-graded bars, approximate solution
of the electroencephalogram forward problem for neural imaging activity, and modeling of atmospheric pollutant
dispersion. These recent applications deal with second-order elliptic or parabolic equations. In this contribution,
we present the application of the two-space method to a mechanical equilibrium problem of a functionally-graded
Euler-Bernoulli beam with non-periodic microstructure, which relies on a fourth-order elliptic equation. To the
best of our knowledge, homogenization of fourth-order equations has been considered only in the periodic case.
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1 Introduction

Micro-heterogeneous materials exhibit both separation of structural scales – which is characterized by the
geometric parameter ε, 0 < ε ≪ 1 – and continuity of matter at the microscale. Under such considerations,
the equivalent homogeneity hypothesis guarantees that the effective physical properties of a micro-heterogeneous
material are the locally-constant physical properties of its equivalent ideal homogeneous material (Panasenko [1]).
The process for obtaining such an equivalent homogeneous material is called homogenization.

From the mathematical point of view, the physical behavior of the micro-heterogeneous material is modeled
by differential equations whose coefficients show microstructure-induced rapid oscillations. On the other hand, the
coefficients of the differential equations that model the behavior of the equivalent homogeneous material do not
depend on the microscale and are called effective coefficients of the micro-heterogeneous material.

Methods of mathematical homogenization – such as two-scale convergence (Allaire [2], Nguetseng [3]);
asymptotic homogenization (Bakhvalov and Panasenko [4], Bensoussan et al. [5], Pobedrya [6]); Σ-, G-, Γ- and
H-convergences (de Giorgi [7], Murat and Tartar [8], Nguetseng [9], Spagnolo [10]); second-order tangent ho-
mogenization (Ponte Castañeda [11], Ponte Castañeda and Tiberio [12]); and oscillating test functions (Tartar
[13]) – suppose that the heterogeneous materials whose models they aim to solve exhibit periodic microstructures.
Moreover, a typical approach to address randomly-microstructured materials consists of approximating such non-
periodic microstructures by the periodic replication of appropriate representative volume elements (Lipton and
Talbot [14], Talbot [15, 16], Talbot and Willis [17]) – as periodicity is, in general, much more tractable mathemati-
cally and computationally – so periodic homogenization can be used. Here, the alternative approach to homogenize
non-periodic micro-heterogeneous materials via the so-called two-space method (TSM – Keller [18]) is adopted.
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Initially developed in 1973, Keller’s TSM is a non-periodic homogenization method based on the construction
of a formal asymptotic solution (FAS) as a two-scale power series of ε. The unknown two-scale coefficients of the
powers of ε are sought as the null-average bounded solutions of the recurrence of problems obtained by substituting
the proposed FAS into the problem modeling the behavior of the micro-heterogeneous material. Moreover, such a
recurrence produces the so-called homogenized problem for the first term of the FAS – which model the behavior of
the equivalent homogeneous material – and the local problems for the local functions carrying the microstructural
information into the other terms of the FAS. The homogenization process is mathematically justified whenever the
difference between the solutions of the original and homogenized problems is of the order of a positive power of ε
with respect to the norm of the space of functions in which they are sought for.

To the best of our knowledge, the few classical applications of the TSM were developed in the contexts
of neutron transport and diffusion in nuclear reactors (Larsen [19, 20]) and poroelasticity considering fluid flow
and saturation (Keller [21], Burridge and Keller [22]). However, more than 40 years later, a number of prelim-
inary results of applications of the TSM has arisen on various areas, namely, effective behavior of composite
(Campos-Suárez [23]) or functionally-graded bars (Pérez-Fernández et al. [24]), approximate solution of the elec-
troencephalogram forward problem for neural imaging activity (Décio Jr. et al. [25]), modeling of atmospheric
pollutant dispersion (Pérez-Campos [26]) and derivation of Biot’s consolidation equations (Murley [27]). These
recent applications deal with second-order elliptic or parabolic equations.

In the present contribution, the TSM is applied to a mechanical equilibrium problem of a functionally-graded
Euler-Bernoulli beam with non-periodic microstructure, which relies on a fourth-order elliptic equation. To the
best of our knowledge, homogenization of fourth-order problems has been considered only in the periodic case
(Huang et al. [28], Kukushkin and Suslina [29], Pastukhova [30, 31], Sloushch and Suslina [32], Suslina [33, 34],
Veniaminov [35]).

This work is organized as follows: in section 2, the boundary-value problem under study is stated and its
exact solution is given; in section 3, the application of the TSM is developed; in section 4, an illustrative example
is presented; finally, some concluding remarks are given in section 5.

2 Problem statement and its exact solution

Let ε ∈ (0, ε0), 0 < ε0 ≪ 1, be a parameter. Consider the non-dimensional version of the problem of the
mechanical equilibrium of a non-periodic functionally-graded micro-heterogeneous Euler-Bernoulli beam of unit
length, with strictly-positive and bounded locally-oscillating flexural rigidity EIε ∈ C2(0, 1) – which means that
EIε(x) = EI(x, x/ε), EI ∈ C2((0, 1) × (0, n)), n ∈ N, n = 1/ε – clamped at both ends and subjected to the
locally-distributed load qε ∈ C(0, 1) – that is, qε(x) = q(x, x/ε), q ∈ C((0, 1)× (0, n)). This problem is stated as
follows: for each ε, find the deflection wε ∈ C4(0, 1) ∩ C1[0, 1] that solves the boundary-value problem

d2

dx2

(
EIε(x)

d2wε

dx2

)
= qε(x), x ∈ (0, 1), wε(x) =

dwε

dx
= 0, x ∈ {0, 1}. (1)

The exact solution of problem in eq. (1) can be obtained formally by direct integration as

wε(x) =

∫ x

0

(Cε
1I

ε
1(χ) + Cε

2I
ε
2(χ) + Iε3(χ)) dχ, (2)

where

Cε
1 =

1

∆ε

∫ 1

0

(Iε3(1)I
ε
2(χ)− Iε2(1)I

ε
3(χ)) dχ, Iε1(χ) =

∫ χ

0

dα

EIε(α)
,

Cε
2 =

1

∆ε

∫ 1

0

(Iε1(1)I
ε
3(χ)− Iε3(1)I

ε
1(χ)) dχ, Iε2(χ) =

∫ χ

0

αdα

EIε(α)
,

∆ε =

∫ 1

0

(Iε2(1)I
ε
1(χ)− Iε1(1)I

ε
2(χ)) dχ, Iε3(χ) =

∫ χ

0

1

EIε(α)

∫ α

0

∫ β

0

qε(γ)dγdβdα.

(3)
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3 Non-periodic asymptotic homogenization via Keller’s TSM

The TSM applied to the problem in eq. (1) aims to construct a FAS as

wε(x) ∼ w(4)(x, ε) =

4∑
k=0

εkwk(x, y), (x, y) ∈ (0, 1)× (0, n), (4)

where the local variable y = x/ε represents the microscale and wk ∈ C4((x, y) ∈ (0, 1) × (0, n)), k = 0, 4, are
bounded unknown functions whose derivatives up to the second order are also bounded. Substitution of the FAS
in eq. (4) into eq. (1)1 taking the chain rule d2/dx2 = ∂2/∂x2 + 2ε−1∂2/∂x∂y + ε−2∂2/∂y2 into account and
grouping by powers of ε yields

0 ∼ d2

dx2

(
EI(x, y)

d2w(4)

dx2

)
− q(x, y)

= ε−4Lyy
yyw0 +

+ ε−3
{
Lyy
yyw1 + 2

(
Lyy
xy + Lxy

yy

)
w0

}
+

+ ε−2
{
Lyy
yyw2 + 2

(
Lyy
xy + Lxy

yy

)
w1 +

(
Lyy
xx + 4Lxy

xy + Lxx
yy

)
w0

}
+

+ ε−1
{
Lyy
yyw3 + 2

(
Lyy
xy + Lxy

yy

)
w2 +

(
Lyy
xx + 4Lxy

xy + Lxx
yy

)
w1 + 2

(
Lxx
xy + Lxy

xx

)
w0

}
+

+ ε0
{
Lyy
yyw4 + 2

(
Lyy
xy + Lxy

yy

)
w3 +

(
Lyy
xx + 4Lxy

xy + Lxx
yy

)
w2 + 2

(
Lxx
xy + Lxy

xx

)
w1 + Lxx

xxw0 − q(x, y)
}
+

+O(ε)

, (5)

where O(ε) represents the collection of the terms corresponding to the positive powers of ε, and the fourth-order
differential operators Lab

cd, a, b, c, d ∈ {x, y}, are defined as

Lab
cd(·) =

∂2

∂a∂b

(
EI(x, y)

∂2(·)
∂c∂d

)
. (6)

In order for the asymptotic equality in eq. (5) to be satisfied for the homogenization limit ε → 0+, the
coefficients of the powers of ε must be null, which produces the following recurrence of differential equations for
wk(x, y), k = 0, 4:

ε−4 : Lyy
yyw0 = 0,

ε−3 : Lyy
yyw1 = −2

(
Lyy
xy + Lxy

yy

)
w0,

ε−2 : Lyy
yyw2 = −2

(
Lyy
xy + Lxy

yy

)
w1 −

(
Lyy
xx + 4Lxy

xy + Lxx
yy

)
w0,

ε−1 : Lyy
yyw3 = −2

(
Lyy
xy + Lxy

yy

)
w2 −

(
Lyy
xx + 4Lxy

xy + Lxx
yy

)
w1 − 2

(
Lxx
xy + Lxy

xx

)
w0,

ε0 : Lyy
yyw4 = −2

(
Lyy
xy + Lxy

yy

)
w3 −

(
Lyy
xx + 4Lxy

xy + Lxx
yy

)
w2 − 2

(
Lxx
xy + Lxy

xx

)
w1 − Lxx

xxw0 + q(x, y).

(7)

In order to solve the recurrence in eq. (7), the global variable x is treated as a parameter and the mean value
operator ⟨·⟩ over the microscale, defined for some y0 ∈ (0, n) as

⟨(·)(η)⟩ = lim
y→+∞

1

y − y0

∫ y

y0

(·)(η)dη, (8)

is applied conveniently after integrating over (y0, y) taking boundedness of wk(x, y), k = 0, 4, and their derivatives
into account. With such considerations, from eq. (7)1, it follows that w0(x, y) = w0(x), that is, the first term of the
FAS in eq. (4) does not depend on the microscale, so it represents the mean deflection – which does not depend on
the microstructure – for macroscopic/effective behavior. This implies that eq. (7)2 becomes identical to eq. (7)1,
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so it follows that also w1(x, y) = w1(x), so it represents an ε-perturbed contribution to the mean deflection –
which contradicts the fact that the mean deflection does not depend on the microstructure – so the only admissible
realization is w1(x) ≡ 0. This implies that eq. (7)3 greatly simplifies to Lyy

yyw2 = −w′′
0 (x)(∂

2EI/∂y2), which
suggests a generalization of Bakhvalov’s ansatz (Panasenko [1]) to seek its solution as w2(x, y) = w′′

0 (x)N2(x, y),
where local function N2(x, y) is the solution of the first local problem

Lyy
yyN2 = −∂2EI

∂y2
, y ∈ (0, n), ⟨N2(x, η)⟩ = 0, (9)

that is,

N2(x, y) = lim
ξ→+∞

1

ξ − y

∫ ξ

y

∫ η

y

lim
ζ→+∞

1

ζ − α

∫ ζ

α

∫ β

α

(
ÊI(x)

EI(x, γ)
− 1

)
dγdβdαdη, (10)

where ÊI(x) is the effective flexural rigidity given by

ÊI(x) =

〈
1

EI(x, η)

〉−1

= EI(x, y)

(
∂2N2

∂y2
+ 1

)
. (11)

With such considerations, eq. (7)4 becomes Lyy
yyw3 = −2

(
w′′′

0 (x)(∂2/∂y2)(EI(x, y)∂N2/∂y) + w′′
0 (x)Lyy

xyN2

)
,

which suggests seeking its solution as w3(x, y) = w′′′
0 (x)N31(x, y) + w′′

0 (x)N32(x, y), where local functions
N3j(x, y), j = 1, 2, are the solutions of the second local problems

Lyy
yyN31 = −2

∂2

∂y2

(
EI(x, y)

∂N2

∂y

)
, Lyy

yyN32 = −2Lyy
xyN2, y ∈ (0, n), ⟨N3j(x, η)⟩ = 0, j = 1, 2, (12)

respectively, that is,

N31(x, y) = 2 lim
ξ→+∞

1

ξ − y

∫ ξ

y

∫ η

y

N2(x, α)dαdη ≡ N3(x, y), N32(x, y) =
∂N3

∂x
, (13)

so w3(x, y) = w′′′
0 (x)N3(x, y) + w′′

0 (x)(∂N3/∂x) = (∂/∂x)(w′′
0 (x)N3(x, y)). Finally, application of ⟨·⟩ to

the updated eq. (7)5 the so-called homogenized equation is obtained which, complemented with the boundary
conditions resulting from substituting the SAF in eq. (4) into eq. (1)2, defines the so-called homogenized problem

d2

dx2

(
ÊI(x)

d2w0

dx2

)
= q̂(x), x ∈ (0, 1), w0(x) =

dw0

dx
= 0, x ∈ {0, 1}, (14)

where q̂(x) = ⟨q(x, η)⟩ is the mean load. As the homogenized problem in eq. (14) has the same structure as
the original problem in eq. (1), its solution w0(x) can be obtained from eq. (2) with eq. (3) by changing EIε(x)

and qε(x) by ÊI(x) and q̂(x), respectively. Observe that the updated eq. (7)5 suggests seeking its solution as
w4(x, y) = wıv

0 (x)N41(x, y) + w′′′
0 (x)N42(x, y) + w′′

0 (x)N43(x, y), where local functions N4j(x, y), j = 1, 3,
are the bounded null-mean solutions of the third local problems, which are not presented here for sake of space.
However, as the main usefulness of eq. (7)5 is to produce the homogenized equation, eq. (14)1, the corresponding
term in the updated eq. (4) can be neglected to produce the SAF w(3)(x, ε) given by

wε(x) ∼ w(3)(x, ε) = w0(x) + ε2Nε
2 (x)

d2w0

dx2
+ ε3

d

dx

(
Nε

3 (x)
d2w0

dx2

)
, (15)

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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where Nε
j (x) = Nj(x, x/ε), j = 2, 3, are given by eq. (10) and eq. (13)1, respectively, with y = x/ε. In fact,

for sufficiently small ε, it suffices to consider the FAS w(2)(x, ε) obtained by taking the first two terms on the
right-hand side of eq. (15), as the contribution of the third term becomes negligible, that is

wε(x) ∼ w(2)(x, ε) = w0(x) + ε2Nε
2 (x)

d2w0

dx2
. (16)

4 Example

In order to illustrate the fact that the exact solution wε of the original problem in eq. (1) converges to the
solution w0 of the homogenized problem in eq. (14), consider the unit load qε(x) ≡ 1 (so the mean load is also
q̂(x) ≡ 1) and the flexural rigidity

EIε(x) =

√
1 +

(x
ε

)2
1 +

x

ε

, (17)

whose behavior is presented in Fig. 1 for ε → 0+. The corresponding effective flexural rigidity, as calculated via
eq. (11), is ÊI(x) ≡ 1.

Figure 1. Behavior of flexural rigidity EIε(x) as ε → 0+.

In this case, the exact solution wε of the original problem in eq. (1) is given by eq. (2) with eq. (3)2,4,6
specialized as

Iεk(χ) =
1

(k − 1)!

∫ χ

0

αk−1dα

EIε(α)
, k = 1, 3, (18)

with eq. (17), and its behavior is shown in Fig. 2 together with the solution w0 of the homogenized problem in
eq. (14), which in this case is w0(x) = x2(x− 1)2/24. Observe that, as expected, wε → w0 as ε → 0+.
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Figure 2. Convergence of the exact solution wε to the homogenized solution w0 as ε → 0+.

5 Conclusions

This work presented non-periodic asymptotic homogenization via Keller’s TSM applied to a boundary-value
problem with a fourth-order differential equation. Such an application seems to be original as, to the best of our
knowledge, homogenization of higher-order problems has been addressed only in periodic settings.
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