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Abstract. A masonry prismatic structure made of alternating layers of mortar and bricks is modeled here as a
periodic two-phase elastic composite with one-dimensional heterogeneity along the layering direction. Predicting
its mechanical failure is important to estimate the admissible stress and stiffness used in its design. At the mortar-
brick interfaces, both ideally perfect and spring-type imperfect contacts are considered. Also, both classical and
failure behaviors are modeled simultaneously, for which a nonlinear constitutive relation resulting from the substi-
tution of the classical Hookean energy into the so-called softening hyperelasticity energy is adopted. The model
is a two-point boundary value problem stated by subjecting the corresponding mechanical equilibrium nonlinear
differential equation to the contact conditions at the interfaces and the mixed boundary conditions corresponding
to uniaxial compression in the layering direction. The masonry structure exhibits separations of scales, so its me-
chanical properties are rapidly oscillating, and so it satisfies the equivalent homogeneity hypothesis. Here, the
effective law, that is, the constitutive relation of the equivalent homogeneous structure, is obtained via the asymp-
totic homogenization method. Finally, comparisons with experimental results from the literature are provided,
which show qualitative agreement and that the model with imperfect contact is more accurate.

Keywords: Failure of masonry structures, Periodic two-phase elastic composites, Softening hyperelasticity model,
Spring-type imperfect contact, Asymptotic homogenization method

1 Introduction

In this work, the mechanical failure under uniaxial compression of masonry prismatic structures made of
alternating layers of mortar and bricks is studied (Peralta et al. [1], Yang et al. [2]). Such an heterogeneous structure
is considered as a periodic two-phase (mortar-brick) composite with one-dimensional heterogeneity in the layering
direction, which is orthogonal to the loading direction. It is assumed that there is a sufficiently large number of
mortar-brick bilayers in order to guarantee separation of scales, that is, the height of the bilayer functioning as a
periodicity cell, is much smaller than the height of the composite. This assumption, together with the continuity
of both material phases at the microscale, ensures that the equivalent homogeneity hypothesis is satisfied. This
implies that the solution of the corresponding two-point boundary-value problem (whose differential equation has
rapidly oscillating coefficients) can be approximated via some mathematical homogenization method that provides
the effective mechanical behavior of the composite via the behavior of its equivalent ideally-homogeneous material
whose problem has effective (constant) coefficients (Peralta et al. [1], Drougkas et al. [3]).

Here, both classical and failure mechanical behaviors are modeled simultaneously by considering the consti-
tutive law resulting form the substitution of the classical Hookean energy into the energy of the so-called softening
hyperelasticity model by Volokh [4], which makes use of energy limiters in order to account for failure phenom-
ena. In fact, Volokh [5] introduced the approach of energy limiters into the constitutive modeling of materials in
the context of fracture of isotropic brittle solids, which is related to the object of this work. Later on, Volokh [6]
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formalized such and approach in the softening hyperelasticity for modeling materials failure. Since then, several
applications of this energy-limiter based model have arisen, for instance, on the subjects of: cavitation under hydro-
static pressure in hyperelastic materials (Lev and Volokh [7], Volokh [8]), multiscale modeling of failure (Volokh
[9]), arterial failure and aneurysm rupture (Volokh [10], Volokh and Vorp [11]), dynamic propagation of cracks
and failure is elastic and soft materials (Abu-Qbeitah et al. [12], Trapper and Volokh [13]), failure of natural and
synthetic rubbers in elastic and thermoelastic settings (Lev et al. [14], Volokh [15, 16]), and failure in elastic and
viscoelastic composites under the finite strains (Aboudi and Volokh [17, 18]). To the best of our knowledge, there
are no other applications of this model to composites besides our own (Décio Jr. [19]) which applies the asymptotic
homogenization method (AHM – Bakhvalov and Panasenko [20]) to nonlinear microperiodic functionally graded
materials (Décio Jr. et al. [21]) and composites considering imperfect contact at the interfaces (Décio Jr. et al.
[22]) or failure with perfect contact (Décio Jr. et al. [23]). Here, the contribution of the imperfect contact at the
brick/mortar interfaces to the mechanical failure of the composite is also considered via the spring-type model,
in which tractions orthogonal to the interface are continuous and proportional to the jump in the mechanical dis-
placement across the interface (Hashin [24]). It should be noticed that the applications of the AHM are two-fold:
providing accurate approximations of the exact solution, and obtaining the effective coefficients or, at least, the
effective stress-strain law, which is an intermediary step of the former and is the mathematical goal of this work.

This work is organized as follows: section 2 presents the formulation of the problem of uniaxial compression
of masonry prismatic structures with spring -type imperfect contact at the brick/mortar interfaces, and the formal
application of the AHM to that problem; section 3 presents and discusses the results of the AHM application
for real brick and mortar constituents in comparison with experimental results from the literature; and section 4
presents some concluding remarks.

2 Methodology

2.1 Problem formulation

Let a masonry prismatic structure of non-dimensional unit height be made by stacking several bricks with
mortar layers between them for structural integrity. Assuming that all bricks and mortar layers are respectively
equal and homogeneous, such a structure is a periodic two-phase composite with periodicity cell of non-dimensional
height ε ≪ 1 made of a single brick (phase r = 1) and the mortar layer immediately below it (phase r = 2), so
ε = ℓ1 + ℓ2, where ℓr is the non-dimensional height of phase r = 1, 2. In order to constitutively account for both
mechanical equilibrium and failure, a formal nonlinear stress-strain relation σε(x, ϵε(x)) is adopted, which repro-
duces both classical Hookean behavior for small strains and yield for sufficiently large strains. Also, it is assumed
that the contact at the brick/mortar interfaces is of linear spring-type, that is, tractions in the stacking direction are
continuous at the brick/mortar interfaces x ∈ Γε, whereas the displacement uε jumps proportionally to the traction
with spring constant βε = β/ε. The composite is under uniaxial compression in the stacking direction with a unit
uniform load at the top (x = 0) while fixed at the bottom (x = 1) and having no body forces (see Fig. 1).

Figure 1. Depiction of the masonry prismatic structure under uniaxial compression for ε = 1/4 (left) and effective
law via Volokh’s model fitted to an experiment in Peralta et al. [1] (right).
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With such considerations, this is a one-dimensional homogenization problem for the effective mechanical
equilibrium of the composite with vertical dimension x ∈ [0, 1] = Ωε

1 ∪Ωε
2 ∪ Γε, where Ωε

r is the region occupied
by phase r = 1, 2 and Γε contains the locations of the spring-type imperfect brick/mortar interfaces. Such a
problem is stated as follows: find the piecewise twice continuously differentiable displacement uε such that

d
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where ϵε = duε/dx is the strain, σε(x, ϵε) = σ(x/ε, ϵε) is the nonlinear constitutive stress-strain relation being
σr(ϵ

ε) its realization in phase r = 1, 2, and J·K = (·)+ − (·)− is the jump operator at the interfaces x ∈ Γε. Note
that βε → +∞ implies ideally perfect contact between mortar and bricks, as the jump of uε in eq. (4) becomes
zero. Conversely, βε → 0+ implies perfect debonding, as the jump of uε becomes unbounded. In particular, it is
assumed that both phases follow Volokh’s generalized model with energy limiters for Hookean materials, that is,

σr(ϵ
ε) = Erϵ

ε exp
{
−Φ−mr

r Wmr
r (ϵε)

}
, Wr(ϵ

ε) =
1

2
Er(ϵ

ε)2, r = 1, 2, (6)

where Er, Φr and mr are the Young modulus, the critical energy and the adjustment parameter of phase r = 1, 2.
For instance, the plot on the right of figure 1 was obtained with the effective Young modulus Ê = 6.43 GPa
calculated via AHM for the configuration on the left of figure 1 for perfect contact (β → +∞) and with E1 = 11
GPa, E2 = 2.2 GPa, ε = ℓ1 + ℓ2 = 1/4, ℓ1 = 0.211, ℓ2 = 0.039, and adjusted effective critical energy Φ̂ = 0.11
MPa and effective parameter m̂ = 1.4 for the uniaxial compression test for specimen 3 of Peralta et al. [1].

2.2 AHM application

The AHM seeks for a formal asymptotic solution (FAS) of problem in eqs. (1)-(5) as a two-scale power series
of ε with unknown functional coefficients. Here, it suffices to take the FAS

uε(x) ∼ u(2)(x, ε) = v0(x) + εu1(x, y) + ε2u2(x, y), y =
x

ε
(7)

where v0, uk, k = 1, 2, are twice continuously differentiable in x and uk are 1-periodic and piecewise twice
continuously differentiable in y. Substitution of FAS in eq. (7) into eq. (1) considering the chain rule d/dx =
∂/∂x+ ε−1∂/∂y and Taylor linearization of σ(y, du(2)/dx) around ζ = dv0/dx+ ∂u1/∂y produces
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where O(ε) gathers the terms corresponding to the positive powers of ε. Thus, for the asymptotic equality in eq.
(8) to be satisfied as ε → 0+, the coefficients of the non-positive powers of ε must be zero, which, for x and v0
fixed, produces the following recurrence over the periodic cell (0, 1) ∋ y for obtaining uk, k = 1, 2:
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which in turn must be complemented with the corresponding conditions obtained by substituting the FAS (7) into
conditions in eqs. (2)-(4) and conditions for periodicity and uniqueness. In particular, the problem for eq. (9)1 is:
for x and v0 fixed, find u1 as the null-average 1-periodic solution of
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where n = ε−1, n ∈ N, and Γ = ε−1Γε. Existence and uniqueness of the null-average 1-periodic solution of the
problem in eqs. (10)-(12), are guaranteed by the following Lemma (Décio Jr. et al. [22]):

Lemma: Let ϵ be a parameter. Let σ(y, ϵ) be a piecewise continuously differentiable function in (0, 1) ∋ y. Then,
there exists a unique 1-periodic function N1 (y, ϵ) that solves the so-called local problem stated as
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where c1 = ℓ1/ε, and ⟨·⟩ is the mean value operator on the periodic cell, so eq. (16) is the null-average condition
for uniqueness of solution N1, whose periodic extension to (1, n) provides u1 for each ϵ = dv0/dx fixed.

In order to obtain the effective stress-strain law of the composite, that is, the relation between the mean stress σ
and the mean strain ϵ that models the behavior of the equivalent homogeneous medium, which is the mathematical
goal of this work, proceed as follows: first, observe from eqs. (13) and (14) that σ(y, ϵ+ ∂N1/∂y) = σ; then, use
the implicit function theorem in eq. (13) to isolate the second argument and obtain ∂N1/∂y = ϵ(y, σ)− ϵ, where
ϵ(y, σ) is the inverse of σ(y, ϵ) with respect to the second argument; now, apply the mean value operator taking
eq. (15) and the 1-periodicity in into account to obtain the inverse effective law ϵ = ⟨ϵ(y, σ)⟩ + σ/β ≡ ϵ̂(σ),
that is, it defines the effective law implicitly; and, finally, the effective law σ = σ̂(ϵ) follows by taking the inverse
of ϵ = ϵ̂(σ), which, from the practical point of view, involves the solution o algebraic equations. Note that the
effective law does not require the full solution of the local problem, but its derivative.

Finally, for completeness, the so-called homogenized problem for v0, which models the effective behavior of
the composite, that is, the physical behavior of the equivalent homogeneous medium, is presented and stated as

d
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where the so-called homogenized equation (17)1 is obtained by applying Lemma 1, p. 1124, of Álvarez Borges
et al. [25], to eq. (9)2 for u2, written as
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for x and v0 fixed, and the 1-periodic solution u1 of problem in eqs. (10)-(12) obtained via the local problem in eqs.
(13)-(16). The Lemma of Álvarez Borges et al. [25] provides the necessary and sufficient condition ⟨F0(y)⟩ = 0
for the existence of 1-periodic solutions for equations with the same structure as eq. (18), so application to eq.
(19)2 produces eq. (17)1. Therefore, it is possible to construct the FAS u(1) from the first two terms of eq. (7).
However, the construction of FAS u(1) is not the goal of this work, but it will be addressed in future ones.

3 Results and discussion

When values for the physical properties of real brick and mortar are unavailable (here, parameters Er, Φr and
mr, r = 1, 2, in eq. (6)), it is possible obtain them from their uniaxial compression tests stress-strain curves. Yang
et al. [2] present the individual curves for one type of brick and three types of mortar, besides the curves for the
masonry prismatic structures produced with these components. The data from these curves were extracted with the
online software WebPlotDigitizer (Rohatgi [26]), and the parameters Er, Φr and mr of brick (r = 1) and mortar
(r = 2) were calculated by a fitting algorithm, where the experimental curves were fitted to Volokh’s constitutive
model in eq. (6), with respect to Er, Φr and mr, r = 1, 2, as shown in Fig. 2. For brick, the fitted parameter values
are E1 = 6.471 GPa, Φ1 = 0.03691 MPa and m1 = 0.5767, whereas for the type of mortar arbitrarily chosen, the
fitted values are E2 = 17.42 GPa, Φ2 = 0.08621 MPa and m2 = 0.8353.

Figure 2. Experimental stress-strain curves of constituents fitted to Volokh’s model: brick (left) and mortar (right).

The constituents proportions of the masonry prismatic structure used in the uniaxial compression tests of
Yang et al. [2] are c1 = 57/67 ≈ 0.851 of brick and c2 = 10/67 ≈ 0.149 of mortar, respectively, which, together
with their physical properties Er, Φr and mr, r = 1, 2, allows obtaining the effective law σ = σ̂(ϵ) via AHM,
as described in the previous section. The effective law curve obtained computationally considering perfect contact
(β → +∞) also follows a Volokh’s model with fitted effective properties Ê = 7.029 GPA, Φ̂ = 0.03339 MPA
and m̂ = 0.6065 (imperfect contact effective laws did not fit well to Volokh’s models), whereas the corresponding
experimental stress-strain follows a different Volokh’s model with fitted effective properties Ê = 2.927 GPA,
Φ̂ = 0.02646 MPA and m̂ = 1.105, as shown in Fig. 3.

Note that linear (Hookean) regimes occur in roughly the same mean strain interval, whereas yield (maximum)
mean stresses occur for almost the same value of the mean strain: ϵ = 0.0026 in the effective law by AHM and
ϵ = 0.0030 in the experiment, while the AHM curves overestimate the experimental ones in 2 − 2.5 MPa, in
the yield mean stress point. In other words, whereas the AHM approach is capable of reproducing the qualitative
behavior of the real situation, it overestimates the compression strength of the real masonry prismatic structure in
this case. Such a quantitative inaccuracy of the AHM approach can have various single or combined causes, for
instance: classical Hookean behavior on the small strains regime (it seems suitable for the real situation at hand, but
power-law or polynomial nonlinearities can also be considered); the scale of the imperfect contact (the typical size
of the imperfections is much smaller than the size of the periodic cell, which suggests using more than two-scale
models and reiterated homogenization); the imperfect contact was considered periodic (real periodic composites
can exhibit non-periodic interfacial properties); the imperfect contact is uniform (real contact regions can contain
local defects such as cracks and pores, and transition zones created by chemical reactions, which suggests using
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Figure 3. Theoretical (left) and experimental (right) stress-strain curves, follow its fitted Volokh’s models.

non-one-dimensional models); the type of imperfect contact considered (there are several imperfect contact models
that can be considered); and the number of periodic cells of the real masonry prismatic structure is insufficient to
guarantee separation of scales (size effects can occur).

4 Conclusions

Volokh’s model proved to be suitable to represent local and effective behaviors with failure at least qualita-
tively. Even though the AHM approach addressed here was insufficient to reproduce accurately the real behavior
in the experiment, it shows great potential to study this type of situations. Therefore, whichever the cause or causes
of the inaccuracy of the AHM approach, the boundary-value problem considered here must be enriched in order to
overcome such a deficiency.
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