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Abstract. A methodology is presented for calculating the effective elastic properties of periodic multi-phase com-
posites made of an anisotropic linear elastic matrix reinforced with a periodical distribution of unidirectional fibers
and exhibiting spring-type imperfect contacts at the interfaces. The periodicity cell contains any finite number
of parallel fibers and exhibits arbitrary cross-section. Fibers also exhibit arbitrary cross-sections and are made of
a different anisotropic linear elastic material each. The methodology uses asymptotic homogenization (AH) to
obtain the mathematical expressions of the effective properties and to formulate the so-called local problems on
the periodicity cell on whose solutions the effective properties depend on. In order to deal with the discontinuities
arising from the spring-type interfaces, the local problems are then restated via domain decomposition (DD) in a
way allowing for an iterative resolution scheme in which the solution of the problem to be solve in each iteration
is obtained via finite elements (FE). Results in the examples are obtained via a computational implementation of
the methodology based on the FreeFEM open-source software, which allows for the variational formulation of the
iteration problem to be dealt with directly.
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1 Introduction

The design and production of composites with effective physical properties that improve over their con-
stituents is an area of intensive development. The aim is to accurately predict the effective properties in terms of
the physical properties of the constituents and on their interfaces, and their geometrical arrangement. In linear
elasticity, the micro-heterogeneity of fiber-reinforced composites produces a rapid oscillation of the coefficients
involved in the partial differential equations model. The analytical solution of this system of equations for general
anisotropic constituents is impossible. Numerical methods, on the other hand, require a very fine discretization,
of the domain, which considerably increases the computational cost and compromises the convergence of the
methods. An alternative is to use mathematical homogenization, which allows obtaining approximations of the ef-
fective (homogenized) properties of heterogeneous media. Effective properties characterize an ideal homogeneous
medium equivalent to the heterogeneous one under study. Here, the asymptotic homogenization method (AHM –
Bakhvalov and Panasenko [1]), which is rigorous and relevant specially for periodic structures, is employed. The
AHM presents a mathematical framework for the calculation of effective coefficients that rely on the solution of so-
called local problems posed on the periodic cell. The local problems are analytically solvable only in exceptional
cases, otherwise are numerically addressed mostly via the finite element method (FEM – Babuška [2]). However,
most works are restricted to periodic cells with square or parallelogram shape and circular, elliptical or square fiber
cross-section. It is our assumption that study of more complicated geometries have been limited by the meshing
capabilities of the software being used. In this work, the effective elastic modulus of composites with microperi-
odic distribution of parallel unidirectional fibers imperfectly bonded to the matrix is addressed. The study of such
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composites is two-dimensional. The approach presented here allows arbitrary shapes for the periodic cell and the
cross-sections of the fibers. The constituents are anisotropic and the linear-spring interface model (Duan et al. [3])
is adopted. The numerical solution of the local problems is obtained via a domain decomposition method (DDM
– Dolean et al. [4], Mathew [5]) and the problems on the subdomains are solved via FEM using the free software
FreeFEM (Hecht [6]), which is based on directly discretizing the variational formulation of the problem, which
makes it very close to the mathematical formulation of FEM. The benefits of the methodology have been already
shown in the computation of the effective thermal conductivity of composites (León-Mecı́as et al. [7]).

2 Problem statement

In what follows, arbitrary shapes for the cross-sections of the fibers are considered. The periodic cells can
have arbitrary polygonal boundary. In order to simplify the presentation, only composites with two types of fibers
are considered. The two fibers can be distinguish by cross-section shape or elastic properties and all fibers are
aligned with the x3-axis of a three dimensional Cartesian coordinate system.

Let v,w ∈ R2 be non-collinear, z = (z1, z2) ∈ Z2, and S ⊂ R2 such that dim(S) = max
y1,y2∈S

∥y1 − y2∥.

Define Tv,w,z(S) = {y ∈ R2 : y = x + z1v + z2w,x ∈ S}. Let Ω# ⊂ R2 be a Lipschitz domain with
polygonal boundary Γ# = ∂Ω#, which is a periodic cell if and only if Tv,w,z1

(Ω#) ∩ Tv,w,z2
(Ω#) = ∅ for

all z1, z2 ∈ Z2 such that z1 ̸= z2 and ∪z∈Z2Tv,w,z(Ω#) = R2. The cross-section of the two fibers are the

Lipschitz domains Ω
(1)
# ,Ω

(2)
# ⊂ Ω# such that Ω(1)

# ∩ Ω
(2)
# = ∅. As Γ# is arbitrarily shaped, it follows that

∂Ω
(1)
# ∩ Γ# = ∂Ω

(2)
# ∩ Γ# = ∅, so Ω

(0)
# = Ω# \ {Ω(1)

# ∪ Ω
(2)
# } is the matrix phase in the periodic cell. The

cross-section orthogonal to the fibers of a 3D sample of the composite is the Lipschitz domain Ω ⊂ R2 is such
that Ω# ⊊ Ω with dim(Ω#) ≪ dim(Ω), so ε = dim(Ω#)/ dim(Ω) ≪ 1 is the relative size of the periodic cell,
which is made explicit by denoting Ωε ≡ Ω. Note that ε → 0+ is the homogenization limit, which have no effect
on the effective properties of the composite. Hereinafter, Einstein’s summation convention over repeated indices is
adopted for lowercase Latin and Greek indices taking values in the sets {1, 2, 3} and {1, 2}, respectively, whereas
index Φ ∈ {0, 1, 2} denotes the phase. Also, comma notation for spacial differentiation is adopted.

Linear elastic constitutive behavior is given by the generalized Hooke’s law and Cauchy’s law combined as

σε
ij = Cε

ijklu
ε
k,l, in Ωε, Cε

ijkl is Ω#-periodic in Ωε, (1)

where Cε
ijkl, σ

ε
ij and uk are the components of the elastic modulus and the stress and displacement fields, respec-

tively, the first two with the usual symmetries, and the first also having positive-definiteness and boundedness. Let
Ωε

α = ∪z∈Z2{Tv,w,z(Ω
(α)
# )∩Ωε} be the phase of type-α fiber with boundary ∂Ωε

α = ∪z∈Z2{Tv,w,z(∂Ω
(α)
# )∩Ωε},

so the matrix phase is Ωε
0 = Ωε \ {Ωε

1 ∪ Ωε
2}. Note that Ωε

α is not connected, whereas Ωε
0 is multiply connected.

Assuming homogeneous constituents, the elastic properties are piecewice-constant, that is, Cε
ijkl(x) = C

(Φ)
ijkl,

x ∈ Ωε
Φ, with C

(Φ)
ijkl constant. Then, the corresponding equilibrium problem in the absence of body forces is

σε
iα,α = 0, in Ωε \ {∂Ωε

1 ∪ ∂Ωε
2}, uε

k = 0, on ∂uΩ
ε, σε

iαnα = 0, on ∂tΩ
ε, (2)

where σε
iα is given in eq. (1), nα are the components of the unit outward normal vector to the boundary ∂Ωε, and

∂uΩ
ε and ∂tΩ

ε are the portions of ∂Ωε in which surface displacement and traction fields are imposed, respectively,
such that ∂uΩε{∪,∩}∂tΩε = {∂Ωε, ∅}. Here, the aim is to obtain the effective elastic modulus, on which bound-
ary conditions in eq. (2) have no effect. On the other hand, conditions at the interfaces ∂Ωε

α are of great importance.
In this work, linear spring-type imperfect contact conditions at ∂Ωε

α are consider. Let Kij = (Cε
iαjβ) ∈ M2(R)

be rank-2 matrices such that Kij = KT
ji for i ̸= j and Kij is symmetric for i = j, so the system of differential

equations in eq. (2) and the constitutive relations in eq. (1) can be rewritten, respectively, as

∇ · σε
i = 0, in Ωε \ {∂Ωε

1 ∪ ∂Ωε
2}, σε

i = Kij∇uε
j . (3)

Let n(Φ)
α be the components of the unit outward normal vector to phase Φ on ∂Ωε

Φ, so the traction field tεΦ
directed by n(Φ) has components tεΦi = σε

i |Ωε
Φ
· n(Φ), where (·)|Ωε

Φ
(x) = lim

y∈Ωε
Φ→x

(·)(y) for x ∈ ∂Ωε
Φ. The
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traction field tεΦ(x) is given in Cartesian components in x ∈ ∪Φ∈{0,1,2}∂Ω
ε
Φ and can be decomposed into normal,

tangential and axial components as tεΦ{n,t,a}(x) = N (Φ)tεΦ(x), where N (Φ) ∈ M3, N (Φ)
11 = N (Φ)

22 = n
(Φ)
1 ,

N (Φ)
33 = 1, N (Φ)

12 = −N (Φ)
21 = n

(Φ)
2 , and N (Φ)

α3 = N (Φ)
3α = 0. Similarly, the Cartesian displacement field

uε
Φ(x) is decomposed into normal, tangential and axial components as uε

Φ{n,t,a}(x) = N (Φ)uε
Φ(x). With such

considerations, the spring-type contact conditions are

tε0{n,t,a}(x) = −ε−1K(α)Juε
{n,t,a}K∂Ωε

α
(x), J·K∂Ωε

α
= (·)|∂Ωε

0
(x)− (·)|∂Ωε

α
(x) on ∂Ωε

α, (4)

where K(α) ∈ M3 with K(α)
11 = k

(α)
n , K(α)

22 = k
(α)
t , K(α)

33 = k
(α)
a and K(α)

ij = 0 for i ̸= j, and J·K∂Ωε
α

is the
jump or contrast operator across ∂Ωε

α. Note that ideal perfect contact between matrix and fibers corresponds to
k
(α)
{n,t,a} → +∞, which implies the continuity of tractions and displacements across the interfaces between the

matrix and type-α fibers, whereas K(α) ≡ 0 represents total debonding between them. The following problem
summarizes these considerations:

Problem 1. In the domain Ωε, find the displacement field uε satisfying the system of partial differential equations
in eq. (3), the boundary conditions in eq. (2)2,3 and the imperfect contact conditions in eq. (4).

Problem 1 is not solvable analytically, whereas any numerical approach requires extremely dense meshes,
which significantly increases the computational cost and compromises the convergence of such an approach. An
alternative is to find approximate solutions for ε → 0+. In this regard, the AHM is an efficient choice.

3 Semianalytical approach to the calculation of the effective elastic modulus

The AHM provides a rigorous approach to obtain approximate solutions of problem 1 for any ε > 0. More-
over, as ε → 0+ those approximate solutions weakly converge to the solution of problem 1. The AHM approxi-
mates the solution uε as the following two-scale formal asymptotic solution:

uε(x) ∼ u(∞)(x, ε) = u0(x) +
∑
k≥1

εkuk(x,y), y =
x

ε
, (5)

where the unknown uk(x,y) are ε−1Ω#-periodic in the local variable y. Substituting eq. (5) into eq. (3), applying
the chain rule and equating the coefficients of the powers of ε to zero, an infinite system of equations is obtained,
to determine the uk(x,y). From the equations for ε−1, u1(x,y) can be found in terms of the solutions of six
local problems on the periodic cell indexed by related to indices pq ∈ {11, 22, 33, 23, 13, 12}, which only involve
the local variable y). The calculation of the components of the effective modulus depends on the solution of such
problems, which are stated as follows:

Problem 2 (local problem pq). In the periodic cell ε−1Ω#, find Npq
j (y) satisfying

∇ · σ(#)
i = 0, in ε−1(Ω# \ {∂Ω(1)

# ∪ ∂Ω
(2)
# }), σ

(#)
i = Kij∇Npq

j + kpq
i ,

σ
(#)
i |

ε−1Ω
(0)
#

· n0 + σ
(#)
i |

ε−1Ω
(α)
#

· nα = 0, on ε−1∂Ω
(α)
# , t0{n,t,a} = −k

(α)
{n,t,a}JN

pq
{n,t,a}Kε−1∂Ω

(α)
#

,
(6)

where kpq
i (y) = (Ci1pq(y), Ci2pq(y))

T with Cε
ijkl(x) = Cijkl(y), and t0{n,t,a} are the normal, tangential and

axial components of the traction field with Cartesian components t0i(y) = σ
(#)
i · n0 for y ∈ ε−1∂Ω

(α)
# .

Once problem 2 is solved, the components Ĉijkl of the effective elastic modulus are obtained as

Ĉijkl =
〈
Cijkl + CijpqN

pq
i,j

〉
ε−1Ω#

, (7)
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where ⟨·⟩S is the mean value operator over set S. Note that, for each pq ∈ {11, 22, 33, 23, 13, 12}, the corre-
sponding solution of problem 2 allows calculating six components of the effective elastic modulus. Also, note that
problem 2 has analytical solution only in exceptional cases, so it is usually solved numerically, being FEM one of
the more employed for this (Babuška [2]). However, the linear spring-type interface conditions in eq. (6)3,4 can
not be easily imposed in standard FEM software implementations because these lacks appropriate jump operators
on interfaces. Moreover, interface conditions eq. (6)4 are not stated in the directions useful for the variational
formulation of the problem needed by FEM. In what follows, the adequate form of such conditions is obtained.

Note that t0 = (N (α))−1N (α)K(α)JNpqK
ε−1∂Ω

(α)
#

, so

t0β = −k
(α)
βγ JNpq

γ K
ε−1∂Ω

(α)
#

, t03 = −k(α)a JNpq
3 K

ε−1∂Ω
(α)
#

,

k
(α)
11 = kn(n

(α)
1 )2 + kt(n

(α)
2 )2, k

(α)
12 = (kn − kt)n

(α)
1 n

(α)
2 , k

(α)
22 = kt(n

(α)
1 )2 + kn(n

(α)
2 )2,

(8)

from which, noting that t0β depends on JNpq
γ K

ε−1∂Ω
(α)
#

linearly, condition in eq. (6)3 can be replaced by

tαβ = −k
(α)
βγ JNpq

γ K
ε−1∂Ω

(α)
#

, tα3 = −k(α)a JNpq
3 K

ε−1∂Ω
(α)
#

, (9)

as eq. (6)2 can be decomposed as

σ
(#)
i = K(Φ)

ij ∇Npq
j + k

(Φ)pq
i , in ε−1Ω

(Φ)
# , (10)

which is the motivation for employing DDM to solve problem 2, as eq. (6)1 becomes a system of equations with
constant coefficients K(Φ)

ij in each phase ε−1Ω
(Φ)
# .

The imperfect contact conditions at the interfaces in eq. (8) and eq. (9) are approached via a variant of
DDM. The basic idea consists of decomposing a region into subdomains in which the solution is approximated
independently. Then, the solution over the whole region can be calculated by iterative substructuring (Jelassi et al.
[8]), or by linking the subdomains via interface conditions (Lions [9]). Here, the latter approach is adopted.

Considering eq. (10), decompose the solution of problem 2 as Npq(y) = N(Φ)pq(y) for y ∈ ε−1Ω
(Φ)
# , so

σ
(Φ)
i = K(Φ)

ij ∇N
(Φ)pq
j + k

(Φ)pq
i , and problem 2 can be rewritten as follows:

Problem 3. Find N(Φ)pq(y) such that N(0)pq(y) is ε−1Ω
(0)
# -periodic, ∇ · σ(Φ)

i = 0 in ε−1Ω
(Φ)
# subjected to

interface conditions eq. (8) and eq. (9) and uniqueness conditions ⟨N(Φ)pq(y)⟩
ε−1Ω

(Φ)
#

= 0.

Note that in problem 3 the system of partial differential equations are separated in domains but coupled
through the interface conditions. If the solution in matrix domain ε−1Ω

(0)
# is known, then the solutions in fibers

domains ε−1Ω
(α)
# can be computed via FEM. Conversely, knowing the solutions in ε−1Ω

(α)
# allows the computa-

tion of the solution in ε−1Ω
(0)
# . This provides the idea for simple DDM iterative scheme below.

Given initial guesses N(α)pq
0 in ε−1Ω

(α)
# and an error tolerance ϵ ≪ 1 then, for m ∈ {0} ∪ N, do:

1. With N
(α)pq
m in ε−1Ω

(α)
# , calculate N

(0)pq
m in ε−1Ω

(0)
# .

2. With N
(0)pq
m in ε−1Ω

(0)
# , calculate N

(α)pq
m+1 in ε−1Ω

(α)
# .

3. If max
α

{∥N(α)pq
m+1 −N(α)pq

m ∥} < ϵ, then stop and take {N(0)pq
m ,N

(α)pq
m+1 } as the solution, else set m = m+ 1

and return to step 1.
The iterative scheme given above is trouble-free to realize with FEM software with the capabilities of

FreeFEM. The variational formulation of the problems to solve in steps 1 and 2 is easy to obtain. Details about the
norms used in step three depends of the FEM spaces used in the numerical implementation.

4 Numerical results and discussion

The strength of the AHM-DDF-FEM combination is illustrated with some examples, all with error tolerance
ϵ = 10−10 and the L2(Ω

(1)
# )-norm in step 3 of the iterative scheme.
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For the first example, consider a unit square periodic cell with a circular hole (so kn = kt = ka = 0). The
matrix is isotropic with Young’s modulus of 70 GPa and Poisson’s ratio of 0.3. In Table 1, the AHM-DDF-FEM
results (labeled A-D-F) are compared with those of Otero et al. [10] (labeled O2013) for some values of the area
fraction A of the hole. The components of the effective modulus are presented in Voigt notation.

Table 1. Components of the effective modulus of porous material

A Ĉ11 (O2013) Ĉ11 (A-D-F) Ĉ12 (O2013) Ĉ12 (A-D-F) Ĉ13 (O2013) Ĉ13 (A-D-F)

0.05 80.52537 80.57222 33.14981 33.15992 34.10255 34.11964
0.20 53.39001 53.41426 18.36599 18.37110 21.52680 21.53561
0.35 36.53604 36.54994 9.781059 9.783213 13.89513 13.89994
0.55 20.49858 20.50756 3.378678 3.378741 7.163179 7.165901
0.75 5.849942 5.859657 0.2891222 0.2881649 1.841719 1.844342

A Ĉ33 (O2013) Ĉ33 (A-D-F) Ĉ44 (O2013) Ĉ44 (A-D-F) Ĉ66 (O2013) Ĉ66 (A-D-F)

0.05 86.96153 86.97176 24.35897 24.36334 23.20944 23.23223
0.20 68.91608 68.92136 17.94506 17.94812 13.42208 13.44047
0.35 53.83708 53.83998 12.91530 12.91738 6.616327 6.629126
0.55 35.79791 35.79955 7.459089 7.460579 1.808771 1.816486
0.75 18.60503 18.60658 2.111431 2.113931 0.07890091 0.08675641

For the second example, consider the effect of the aspect ratio of an elliptical fiber imperfectly bonded to a
unit square periodic cell. The matrix is as in the first example, and the isotropic fiber has Young’s modulus of 450
GPa and Poisson’s ratio of 0.17. Area fraction of the ellipse is 0.35 and the semi-major axis varies as a ∈ [0.3, 0.4].
The interface constants are kn = 10, kt = ka = 0.01. Figure 1 shows the components of the effective modulus.

Figure 1. Components of the effective elastic modulus for elliptic fibers versus semi-major axis a.

For the third example, consider the effect of the in-plane rotation of an elliptical fiber imperfectly bonded to
a unit square periodic cell. The setting is the same as in the second example, except for constant semi-major axis
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a = 0.4 and interface constants are kn = kt = ka = 0.001. The rotation angle varies as θ ∈ [0, π/2]. Figure 2
shows the components of the effective modulus.

Figure 2. Components of the effective elastic modulus for elliptic fibers versus rotation angle θ.

The last example deals with the arbitrariness of the boundaries of the cross-sections of the periodic cell
and the fibers. In particular, the periodic cell chosen among various possibilities is cross-shaped and contain
a circular fiber and a T-shaped fiber. Such a choice of periodic cell is the only one to completely contain the
two types of fibers and has the fewest subdomains, which facilitates decomposing the domain, its meshing and
imposing adequate periodicity conditions. The mesh size of the last example is 0.02, resulting in a mesh with
3998 triangles and 2302 vertices. The matrix is made of isotropic epoxy resin LY558 with C

(0)
11 = 8.65 GPa,

C
(0)
12 = 4.75 GPa and C

(0)
44 = 1.95 GPa, whereas fibers are made of transversely isotropic type-I (α = 1) and type-

II (α = 2) Morganite, respectively, with C
(α)
11 = (12.1, 20.4) GPa, C(α)

12 = (6.49, 9.4) GPa, C(α)
13 = (6.5, 10.5)

GPa, C(α)
33 = (410, 240) GPa, C(α)

44 = (13.7, 24) GPa, C(α)
66 = (2.8, 5.5) GPa. The interface constants are

k
(α)
n = k

(α)
t = k

(α)
a = (1, 0.001). The components of the effective modulus obtained are Ĉ11 = 6.34 GPa,

Ĉ12 = 2.98 GPa, Ĉ13 = 3.29 GPa, Ĉ22 = 5.9 GPa, Ĉ23 = 3.14 GPa, Ĉ26 = 0.02 GPa, Ĉ33 = 102.83 GPa,
Ĉ44 = 4.73 GPa, Ĉ55 = 4.88 GPa, Ĉ66 = 1.61 GPa, so the effective behavior resembles that of a material
with tetragonal or hexagonal crystalline structure. Figure 3 shows the corresponding solutions Npq

i of the local
problems with i and pq ∈ {11, 22, 33, 23, 13, 12} corresponding to rows and columns, respectively.

The number of iterations of the iterative scheme was between 4 and 56 for all the pq problems in all the exam-
ples. For kn,t,a ≪ 1, the number of iterations was less than 10, with moderate mesh sizes in all the experiments.

5 Conclusions

This work presents a methodology for the calculation of the effective properties of microperiodic elastic com-
posites with spring-type imperfect interfaces. The difference with other works is that the methodology presented
here allows arbitrarily-shaped periodic cells as well as completely anisotropic constituents. This is achieved by
using the DDM in a novel way that allows using FEM implementations without great complications. Im partic-
ular, we chose FreeFEM software because of its good 2D meshing capabilities and the way of assemble stiffness
matrices directly from the variational formulation of the problem. The results presented validate the quality of the
proposed methodology.
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Figure 3. Local functions Npq
i with i and pq ∈ {11, 22, 33, 23, 13, 12} indicating rows and columns, respectively.
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