
Elastostatic analysis using the boundary element method and the Aifantis
gradient elasticity theory

Fabio C. da Rocha1, Leslie D. P. Fernández2, Julián B. Castillero3, Maria do S. M. Sampaio4

1Graduate Program in Civil Engineering, Federal University of Sergipe
Av. Marcelo Deda Chagas, s/n, 49107-230, São Cristóvão - SE, Brazil
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Abstract. The increasing use of micro and nanoscale structures has sparked interest in theories incorporating the
effect of scale since the classical continuum theory has limitations in capturing effects that depend on size. With
such a motivation, in this work, three-dimensional elastostatic microstructure modeling is carried out using the
boundary element method (BEM). To account for microstructural effects, the simplified gradient theory proposed
by Aifantis, a particularization of Mindlin’s general theory, is employed. A variational argument is established
to determine the governing equations and boundary conditions for the problem. This argument explains the fun-
damental solution of gradient elasticity, and the integral contour representation is constructed with the aid of the
reciprocal identity. Curved triangular elements of Proriol spectral functions are used to approximate the geometry
and the physical parameters for the BEM discretization. The presented formulation yields results consistent with
other analyses in the literature.
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1 Introduction

The theory of classical continuous medium mechanics, including linear and non-linear elasticity, damage,
and plasticity, has been widely used in applications in civil, chemical, electrical, and mechanical engineering
and several other fields of physics and life sciences. This theory was initially developed to describe deformation
phenomena and processes that can be observed with the naked eye, that is, problems on scales ranging from
millimeters to meters. However, in the last century, it was used to describe phenomena ranging from atomistic
to terrestrial scales (faults and earthquakes) (Askes and Aifantis [1]). It is in the micro- and nano-scale regime
that the dimensions of the structure become comparable to the size of the material’s microstructure, and both
microstructural and size effects cannot be neglected. Examples of the importance of the size effect are significant in
the analysis of thin films and plates, micro-beams, microelectronic and micromechanical devices, as well as in the
phenomenon of wave propagation in materials, such as polycrystals, polymers, bones, and reinforced composites
by fibers or particles (Polyzos and Fotiadis [2], Lei et al. [3], Aifantis [4]).

Due to the lack of internal length scale parameters, the classical theory of elasticity fails to describe the
behavior of materials on the micro and nanoscale. However, it is possible to overcome this deficiency through
so-called improved elastic theories, in which the intrinsic parameters that correlate the microstructure with the
macrostructure are involved in the constitutive equations and the equation of motion of the elastic continuum.
Among the improved theories, there is the gradient strain theory (Toupin [5]) and the high-order elastic gradient
strain theory (Mindlin [6]).

With the increased use of computational methods, the implementation of gradient elasticity has become the
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focus of some studies, especially in the application of the boundary element method (BEM), as it is non-trivial
due to the complexity of partial differential equations that govern the problems and the fundamental solution that
the method requires. However, BEM has the advantage of reducing the dimensionality of the problems and the
absence of the need for C1-continuity of the approximating functions, which makes this numerical method ideal
for analyzing elastic gradient problems (Beskos [7, 8]).

The present work aims to employ and analyze the precision of the approximating function of any order
formed by Proriol polynomials (Blyth and Pozrikidis [9]) and interpolated, at strategically allocated points, in
the positions of the zeros of the Lobatto polynomials after symmetrization through a mapping in the domain of
the triangular element. The work is presented as follows: in section 2, the constitutive equations and boundary
conditions are given; in section 3, the fundamental 3D solution for gradient elastostatic problems is presented; in
section 4, the integral identity and integral contour representation are shown; in section 5, the formulation of the
BEM is presented; in section 6 the Proriol approximation base is described; in section 7 the process of obtaining the
Lobatto nodal distribution for a triangular element is shown; and in section 8 an example of validation is presented.

2 Governing equations, boundary conditions, and constitutive model

Some notations used require a presentation. The first refers to the vertical double and triple dot operation to
represent the double and triple contraction inner products, respectively, which obey the rules:

(a⊗ b) : (c⊗ d) = (b · c) (a · d) ,

(a⊗ b⊗m)
... (I ⊗ c⊗ d) = (m · I) (b · c) (a · d) , (1)

where a, b, c, d, m, I are vectors in three-dimensional space and ⊗ represents the tensor product. The symbol
(◦)321 is defined as

(a⊗ b⊗ c)
321

= (c⊗ b⊗ a) . (2)

Let a linear elastic body of volume V be limited by the surface S. The geometry of this body is described
with the help of the unit normal vector n̂ in S, referenced in a Cartesian coordinate system with the origin located
inside V . According to Lam et al. [10] and Rocha [11], in which the macroscopic strain tensor was considered
equal to that of the micro-configuration, the internal strain energy is described by eq.(3),

δℵ = −
∫
V

[∇ · (τ̃ −∇ · µ̃) · δū]dV +

∫
S

(n̂ · µ̃ · n̂)[n̂ · ∇(δū)]dS +∫
S

{n̂ · τ̃ − (n̂⊗ n̂) :
∂µ̃

∂n
− n̂ · (∇S · µ̃)− n̂ · [∇S · (µ̃)213]} · δūdS +∫

S

[(∇S · n̂)(n̂⊗ n̂) : µ̃− (∇Sn̂) : µ̃] · δūdS +
∑
Ca

∮
Ca

{∥(m̂⊗ n̂) : µ̃∥ · δū}dC, (3)

where Ca are the contours formed by the intersection of two surface portions S1 and S2 of S. Also, τ̃ is the
symmetric stress tensor, ū is the displacement vector, ∇ is the gradient operator, ∇S

(
=

(
Ĩ − n̂⊗ n̂

)
· ∇

)
is the

surface gradient operator, Ĩ denoting the unit tensor, µ̃ is the double forces per unit area, with 27 components µijk.
In addition, m̂ is the outer conormal vector that satisfies m̂ = ŝ× n̂, with ŝ being the unit tangent vector to Ca.

The variation of the work done by external forces in V is due to the body force f, the external surface tractions
P, the surface double stresses R and the surface jump stresses E. Thus, the variational equation of external work
done can be written as (Mindlin [6])

δℵ1 =

∫
V

f · δūdV +

∫
S

R · [n̂ · ∇(δū)]dS +

∫
S

P · δūdS +
∑
Ca

∮
Ca

(E · δū)dC. (4)

Based on the fact that δℵ = δℵ1, and relating eq.(3) with eq.(4), the equilibrium for two- and three-
dimensional gradient elastic bodies can be described by the equation:

∇ · (τ̃ −∇ · µ̃) + f = 0. (5)

The boundary conditions for traction and displacement, present in the classical formulation of elasticity but
with the incorporation of microstructure, are, respectively:

P = n̂ · τ̃ − (n̂⊗ n̂) :
∂µ̃

∂n
− n̂ · (∇S · µ̃)− n̂ · [∇S · (µ̃)213] + (∇S · n̂)(n̂⊗ n̂) : µ̃− (∇Sn̂) : µ̃ = P0, (6)
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ū = ū0, (7)

and the additional non-classical boundary conditions

R = n̂ · µ̃ · n̂ = R0, (8)

E = ∥(m̂⊗ n̂) : µ̃∥ = E0, (9)

where P0, ū0, R0, q0 and E0 represent prescribed values. Making use of the considerations for isotropic material
adopted in Mindlin [6], the constitutive equations are expressed by

σ̃ = τ̃ + s̃, τ̃ = 2µε̃+ λ(∇ · ū)Ĩ , ε̃ = (∇ū+ ū∇)

2
,

s̃ = −[2µc3∇2ε̃+ λc1Ĩ∇2(∇ · ū) + λc2∇∇(∇ · ū)], (10)

where ∇2 is the Laplacian operator, ε̃ is the strain tensor, σ̃ is the total stress tensor, τ̃ and s̃ are called Cauchy
stress tensor and relative stress tensor, respectively. The total stress tensor is correlated to the strain tensor and the
gradient of the strain tensor through five independent material constants (λ, µ, c1, c2 and c3), the first two of which
are known as the Lamé constant (Mindlin [6]).

The simplest and mathematically least difficult-to-manipulate constitutive equation is proposed by Aifantis
and co-authors (Aifantis [12], Ru and Aifantis [13]), in which they correlate the double stress tensor, µ̃, with the
relative stress tensor, s̃, according to the relations:

µ̃ = g2∇τ̃ , s̃ = −∇ · µ̃ = −g2∇ · ∇τ̃ = −g2∇2τ̃ , (11)

where g2 is the only parameter that links the microstructure to the microstructure, known as the characteristic
length. Adopting the simplifications of Aifantis’ theory and substituting eq.(11) into eq.(5), we obtain the equation
of motion for gradient elasticity of the continuous medium in terms of the displacement field ū:

µ∇2ū+ (λ+ µ)∇∇ · ū− g2∇2[µ∇2ū+ (λ+ µ)∇∇ · ū] + f = 0. (12)

3 Fundamental solution

This section presents the fundamental three-dimensional solution for gradient elastostatic problems. This
solution is defined as a particular solution of the following partial differential equation

Lũ∗(r) = −∆(y − x)Ĩ , (13)

where ∆ is the Dirac delta function, y is the displacement field point, Lū∗(r) = −∆(y − x)Ĩ , due to the unitary
force applied at point x. Also, r is the distance between the field point and the source point (r = |y − x|), and L
is the linear operator

L ≡ µ∇2 + (λ+ µ)∇∇ · −g2∇2[µ∇2 + (λ+ µ)∇∇·]. (14)

The fundamental solution of eq. (13) is given by (Rocha [11])

ũ∗(r, µ, ν, g) =
1

16πµ(1− ν)
[Υ(r, ν, g)Ĩ − χ(r, g)r̂ ⊗ r̂], (15)

where ν is the Poisson ratio, r̂ is the unit vector of the radius r and, finally, Υ and χ are scalar functions given by :

Υ(r, ν, g) = (3− 4ν)
1

r
+ 2(1− 2ν)

[
−g2

r3
+

(
g2

r3
+

g

r2

)
e−r/g

]
+

4(1− ν)

[
−g2

r3
+

(
g2

r3
+

g

r2
+

1

r

)
e−r/g

]
, (16)

χ(r, g) = −1

r
+

6g2

r3
−

(
6g2

r3
+

6g

r2
+

2

r

)
e−r/g, (17)

for three-dimensional problems.
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4 Integral identity and integral boundary representation

The valid reciprocal identity for the gradient elasticity presented in this work can be written, for non-smooth
surface S, as (Polyzos et al. [14])

∫
V

{f∗ · ū− f · ū∗} dV +

∫
S

{P∗ · ū− P · ū∗} dS

=

∫
S

{
R · ∂ū

∗

∂n
− R∗ · ∂ū

∂n

}
dS +

∑
Ca

∮
Ca

(E · ū∗ − E∗ · ū) dC. (18)

If the surface S is smooth, the last integral of eq.(18) becomes zero. It is assumed that the displacement field
ū∗ is the result of an excitation in the state of deformation and tension (ū∗, σ̃∗), in the form:

f∗ = ∆(y − x)ê, (19)

with ê being the direction of the unit force acting at point x. The fields ū∗(y), P ∗(y), P ∗(y) and E∗(y) can be
represented, respectively, by the fundamental tensors ũ∗(x, y), P̃ ∗(x, y), R̃∗(x, y) and Ẽ∗(x, y), according to the
following relations

ū∗(y) = ũ∗(x, y) · ê, P ∗(y) = P̃
∗
(x, y) · ê, R∗(y) = R̃

∗
(x, y) · ê, E∗(y) = Ẽ

∗
(x, y) · ê. (20)

Applying eq.(15) and eq.(20) to eqs.(6) - (9), the fundamental solutions P∗, R∗ and E∗ are obtained. Substi-
tuting eq.(20) in eq.(18) and using the symmetry of the fundamental solution ũ∗, the following boundary integral
equation is obtained

c̃(x) · ū(x) +
∫
S

{
˜̄P
∗
(x, yb) · ū(yb)− Ũ

∗
(x, yb) · P (yb)

}
dSyb

=

∫
S

[
˜̄Q
∗
(x, yb) ·R(yb)− ˜̄R

∗
(x, yb) · q(yb)

]
dSyb

+∑
Ca

∮
Ca

(
Ũ

∗
(x, yb) · E(yb)− ˜̄E

∗
(x, yb) · ū(yb)

)
dCyb

+

∫
V

[
Ũ

∗
(x, y) · f(y)

]
dV , (21)

where yb represents the field point on the contour, q = ∂ū(yb)/∂nyb
, Ũ

∗
= ũ∗, ˜̄P =

(
P̃
∗)T

, ˜̄Q
∗
= (∂ũ∗/∂nyb

)
T ,

˜̄R
∗
=

(
R̃

∗)T

, ˜̄E
∗
=

(
Ẽ
∗)T

and the jump tensor c̃(x) is given by (Brebbia and Dominguez [15])

c̃(x) = 0, if x ∈ (R3 − V ), c̃(x) = Ĩ , if x ∈ V, c̃(x) = 1
2 Ĩ , if x ∈ S. (22)

Equation (21) has five field unknowns (considering the absence of body force), that is, ū(yb), P (yb), q(yb),
R(yb) and E(yb). There are also three boundary conditions, and an additional integral equation needs to be
incorporated to obtain all field unknowns. This additional equation is obtained by applying the differential operator
∂/∂nx to eq. (21) and disregarding the body force.

5 Boundary element method for gradient elastic body

For the BEM implementation in FORTRAN, the smooth surface S is discretized into E triangular boundary
elements. For a nodal point k, the eq. (18) and its partial derivative concerning the normal have, respectively, the
form:

1

2
ūk +

L̃∑
β=1

Hk
β · uβ +

L̃∑
β=1

Kk
β · qβ =

L̃∑
β=1

Gk
β · P β +

L̃∑
β=1

Lk
β ·Rβ , (23)

1

2
qk +

L̃∑
β=1

Sk
β · uβ +

L̃∑
β=1

T k
β · qβ =

L̃∑
β=1

V k
β · P β +

L̃∑
β=1

W k
β ·Rβ . (24)

With ūk = ū(xk), qk = q
(
xk

)
=

∂ū(xk)
∂nx

, L̃ being the total number of nodes, β the global numbering for the
nodes, which is associated with each pair (e, a). e and a represent the element and node number, respectively.
Additionally, there is

Ak
β =

∫ 1

−1

∫ 1

−1

B
(
xk, y(ξ1, ξ2)

)
Na(ξ1, ξ2)J(ξ1, ξ2)dξ1dξ2, (25)
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where if A = H ⇒ B = ˜̄P
∗
, or A = K ⇒ B = ˜̄R

∗
, or A = G ⇒ B = Ũ∗, or A = L ⇒ B = ˜̄Q

∗
, or

A = S ⇒ B = ∂ ˜̄P
∗

∂nx
, or A = T ⇒ B = ∂ ˜̄R

∗

∂nx
, or A = V ⇒ B = ∂Ũ∗

∂nx
, or A = W ⇒ B = ∂ ˜̄Q

∗

∂nx
. Na

is also defined as the shape functions of a triangular element, J the Jacobian of the transformation of the global
coordinate system (X1, X2, X3) for dimensionless local (ξ1, ξ2) and, finally, uβ , qβ , P β , Rβ are the nodal values
of the corresponding field functions.

6 Proriol polynomial base

Proriol polynomials are the base of interest in this work, as they are entirely orthogonal over the triangle area
(Proriol [16]). To introduce this polynomial base, the standard triangle is initially mapped from the plane ξ1 − ξ2
to the standard square −1 ≤ ξ

′

1 ≤ 1, −1 ≤ ξ
′

2 ≤ 1, using the Duffy transformation:

ξ1 =

(
1 + ξ

′

1

)(
1− ξ

′

2

)
4

, ξ2 =

(
1 + ξ

′

2

)
2

. (26)

Proriol polynomials (Proriol [16]) is formed by the product of Legendre and Jacobi polynomials, whose
explicit expression is given by

PRkl =

[
k∑

i=0

(
k!

i!(k − i)!

)2(
ξ′1 − 1

2

)k−i(
ξ′1 + 1

2

)i
](

1− ξ′2
2

)k

×

 l∑
j=0

(l + 2k + 1)!

j!(l + 2k + 1− j)!

l!

(l − j)!j!

(
ξ′2 − 1

2

)l−j(
ξ′2 + 1

2

)j
 . (27)

7 Lobatto nodal distribution for triangular element

Once Lobatto’s nodal distribution is known to be optimal for one-dimensional interpolation ( Pozrikidis [17]),
this work is motivated to use the one-dimensional nodal distribution with v1 = 0, vm+1 = 1 and the nodes inside
vi, i = 2, 3, . . . , m, positioned at the scaled zeros of the polynomial of Lobatto grade m − 1. Thus, Lobatto’s
nodal distribution is defined by:

v1 = 0, vi =
1

2
(1− ti−1) and vm+1 = 1, (28)

where ti, for i = 2, 3, . . . , m, are the zeros of the Lobatto polynomial of degree m − 1 distributed in the open
interval (−1, 1) . The i-th term of the Lobatto polynomial is defined as Loi(t) ≡ L′

i+2(t), where L′
i+2(t) is the

first derivative of the Legendre polynomial. The nodes on the contour and inside are identified by the coordinates
(ξ1, ξ2) = (vi, vj), where i = 1, . . . , m + 1 and j = 1, . . . , m + 2 − i. The nodes are redistributed using the
mapping specified by Blyth and Pozrikidis [9] and described by eq. (29) to ensure a symmetrical distribution of
nodes around the three vertices:

ξi1 =
1

3
(1 + 2vj − vi − vk) , ξ

j
2 =

1

3
(1 + 2vj − vi − vk) , (29)

with i = 1, 2, . . . , m+ 1, j = 1, 2, . . . , m+ 2− i e k = m+ 3− i− j.

8 Validation example

Let there be a spherical solid of radius a and subjected to a radial displacement u0 (classical boundary
condition), while the normal displacement gradient is zero at the boundary (non-classical boundary condition),
that is,

u (r)|r=a = u0r̂, (30)

qr (r)|r=a =
∂ur (r)

∂n

∣∣∣∣
r=a

= 0, (31)

where u(r) is the radial displacement and r the distance from the center of the sphere. The analytical displacement
solution for this problem is presented in Tsepoura et al. [18]. This problem is solved numerically by formulating
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the micromechanical BEM considering the Proriol approximation of degree 4 and compared with both analytical
and numerical results presented in Tsepoura et al. [18]. This example adopted the following values: u0 = 1,
a = 1 and ν = 0. The problem was discretized by 256 triangular elements for the approach via BEM - Proriol
degree 4, while Tsepoura et al. [18] used 304 quadrilateral quadratic elements. This new approach has proven to be
convergent and stable, even at higher-order degrees, such as fourth-order. Figs.(1-2) show, respectively, the values
of the radial displacement ur, strain εr, double stress µrrr and total stress σrr as the value of the characteristic
length g is varied. The results show good agreement between the proposed formulation and the numerical and
analytical results presented in Tsepoura et al. [18], with errors of less than 1.5%. In Fig. 2-b, only the results of
the BEM - Proriol formulation and the analytical solution are presented since Tsepoura et al. [18] does not present
numerical results for the total stress. When g is small, deformation gradient theory is less necessary. However, as
g increases, gradient theories become crucial for accurate mechanical analysis, such as in small-scale problems.

Figure 1. Behaviors of strain (a) and displacement (b), both in the radial direction, as the parameter g varies. The
solid line and the triangle and star markers represent, respectively, the analytical solution, that of Tsepoura et al.
[18] and the present model.

Figure 2. Behaviors of double stress (a) and total stress (b), both in the radial direction, as the parameter g varies.
The solid line and the triangle and star markers represent, respectively, the analytical solution, that of Tsepoura
et al. [18] and the present model.
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9 Conclusions

This work develops and implements a BEM formulation, considering microstructural effects in three-dimensional
elastostatic problems. The simplified elastic gradient theory of Aifantis, a particularization of Mindlin’s general
theory, was used to consider the microstructural effect. To formulate the BEM, triangular elements of any or-
der from Proriol were interpolated at the Lobatto polynomials’ zero nodes to construct the shape functions. The
BEM-Proriol-Lobatto coupling proved efficient and convergent to the reference results without losing precision
and without the Runge effect.
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