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Abstract. Extensive research has been conducted in the field of composite materials, particularly in laminated
composites. However, laminated composites often face challenges such as stress concentration at interfaces due
to the sharp differences in properties between layers. This study proposes an approach to mitigate stress con-
centrations in laminated beams using functionally graded materials (FGMs). Functional gradation is achieved by
continuously varying properties across the thickness of each beam layer. The modeling is based on the refined
zigzag theory (RZT), with an additional introduction of the sublayers to capture the functional gradation. The
analysis involves deriving the zigzag function for FGM, which is referred to as modified RZT. Subsequently, the
kinematic model is applied based on the principle of minimum total energy to derive the Euler equation and its
associated boundary conditions. For analytical resolution, the Navier procedure is employed. The results obtained
for displacement and tension fields are compared with other formulations from the literature, which exhibit good
agreement and therefore validate the proposed method.
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1 Introduction

The demand for solutions that meet high-performance requirements in civil, mechanical, and aerospace en-
gineering has driven the study of composite materials. According to Kaw [1], a composite is defined as a material
composed of two or more constituents that are not soluble in each other and are combined at the macroscopic level.
Combining materials to obtain a material with improved physical and chemical properties is a timeless practice.
As Vinson and Sierakowski [2] report, ancient Israeli workers incorporated chopped straw into bricks to enhance
their structural performance.

Among the various types of composites, laminates are particularly notable for their widespread applications
in structures such as beams and plates. Laminates are characterized by the strategic stacking of layers of different
materials to create structures with high mechanical performance. However, as Thai and Vo [3] have noted, lam-
inated composites under load are susceptible to stress concentrations at the interfaces between layers. This issue
can be mitigated by incorporating functionally graded materials (FGMs) into the structure, as Sayyad and Ghugal
[4] suggest. FGMs are distinguished by a continuous variation of material properties from one interface to another,
which helps to alleviate stress concentrations. According to Pu et al. [5], this gradual change in properties across
the material enhances the structural performance and durability of FGMs.

Due to the high heterogeneity of the cross-sections of laminated composites, Tessler et al. [6] proposed a high-
order beam theory capable of accurately modeling their displacement and stress fields, calling it the refined zigzag
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theory (RZT). However, the original RZT only considers constant material properties. Therefore, this work aims to
develop a modified RZT formulation by incorporating FGMs into its theoretical framework for the static analysis
of laminated composite beams subjected to bending. The functional gradation is integrated into our formulation
using the fictitious sublayer technique presented by Chen and Su [7]. Euler equations and their respective boundary
conditions are derived from the principle of minimum total energy. We solve the problem analytically using the
Navier procedure and analyze the response fields by varying parameters such as grading index, layer thickness,
and the length-to-total thickness ratio of the beam.

2 Methodology

Consider a supported FGM beam subjected to a load q(x), referenced by the x and z axes, as shown in Fig. 1.

 

Figure 1. Transversely loaded FGM beam.

The displacement field is expressed as

u(k,n)x (x, z) = u0(x) + zθ(x) + ϕ(k,n)(x, z)ψ(x), k = 1, 2, ..., N, n = 1, 2, ..., N, (1)

uz(x, z) = w(x), (2)

where ux and uz denote the axial and transverse displacements, respectively. k and n represent the kth and nth
layers and sublayers, respectively. Additionally, N and N represent the last layer and last sublayer, respectively.
The axial displacement in the midplane of the beam is denoted by u0, the rotation of the cross-section by θ, the
zigzag function by ϕ, the amplitude of the zigzag function by ψ, and the deflection by w, respectively.

The zigzag function is expressed by

ϕ(k,n)(x, z) =

(
z(k,n) − z

h(k)/N

)
u(k,n−1)
x (x, z(k,n)) +

(
z − z(k,n−1)

h(k)/N

)
u(k,n)x (x, z(k,n)), (3)

where the thickness of each layer is denoted by h(k) and the total thickness of the beam is denoted by h. The term
z(k,n) represents the thickness coordinate at the interface between the (n − 1)th and the nth sublayer of the kth
layer, expressed as

z(k,n) = z(k−1) +
n

N
h(k). (4)

The slope of the zigzag function is defined by

β(k,n)(x) = ϕ(k,n),z . (5)

where the subscripted comma notation indicates differentiation with respect to the variable(s) to its right. By
differentiating eq. (3) with respect to z and substituting it into eq. (5), we obtain
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β(k,n)(x) =
u
(k,n)
x − u

(k,n−1)
x

h(k)/N
. (6)

The strain field is obtained by differentiating eq. (1) and eq. (2) as

ε(k,n)x (x, z) = u(k,n)x,x = u0,x + zθ,x + ϕ(k,n)ψ,x, (7)

γ(k,n)xz (x, z) = u(k,n)x,z + uz,x = w,x + θ + β(k,n)ψ, (8)

where εx and γxz represent the axial and shear strains, respectively. From eq. (7) and eq. (8), the corresponding
stress field can be obtained as

σ(k,n)
x (x, z) = E(k,n)

x ε(k,n)x = E(k,n)
x

(
u0,x + zθ,x + ϕ(k,n)ψ,x

)
, (9)

τ (k,n)xz (x, z) = G(k,n)
xz γ(k,n)xz = G(k,n)

xz

(
w,x + θ + β(k,n)ψ

)
, (10)

where σx and τxz denote the axial and shear stresses, respectively. E and G represent the longitudinal and shear
moduli of elasticity, respectively. For algebraic manipulation of eq. (10), we introduce

γ = w,x + θ, (11)

η = γ − ψ, (12)

where γ denotes the average shear strain and η denotes the auxiliary function. Substituting eq. (11) and eq. (12)
into eq. (10), the shear stress can be rewritten as

τ (k,n)xz (x, z) = G(k,n)
xz η +G(k,n)

xz

(
1 + β(k,n)

)
ψ. (13)

The RZT enforces the continuity of shear stress between layers. Thus, the second term of eq. (13) is defined
as constant, that is,

G = G(k,n)
xz

(
1 + β(k,n)

)
, (14)

where G represents the average shear modulus. Isolating β(k,n) we find

β(k,n) =
G

G(k,n)
− 1. (15)

However, based on the RZT assumption that u(1,0) = 0 and u(N,N) = 0, it is verified that the integration of
the slope of the zigzag function over the cross-sectional area of the beam yields zero, that is,

∫
A

β(k,n)dA = 0. (16)

where A denotes the cross-sectional area of the beam. Integrating eq. (15) over the cross-sectional area and
applying the property stated in eq. (16), the average shear modulus can be expressed as
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G =
h

N∑
k=1

N∑
n=1

h(k)

NG(k,n)

. (17)

The axial displacements at the interfaces can be expressed in terms of the shear moduli by substituting eq. (15)
into eq. (6), that is,

u(k,n)x (x, z) = u(k,n−1)
x +

(
G

G(k,n)
− 1

)
h(k)

N
. (18)

Substituting eq. (17) into eq. (18), we obtain the recurrence formula given by

u(k,n)x (x, z) = u(k,n−1)
x +

h(k)

N

 h

G(k,n)
N∑

m=1

N∑
r=1

h(m)

NG(m,r)

− 1

 . (19)

Verifying the recurrence formula presented in eq. (19) for each sublayer, it is observed that the axial displace-
ments can be expressed independently of the previous sublayer as

u(k,n)x (x, z) =
h

N∑
m=1

N∑
r=1

h(m)

NG(m,r)

[
k−1∑
m=1

N∑
r=1

h(m)

G(m,r)N
+

n∑
r=1

h(k)

G(k,r)N

]
−

(
h

2
+ z(k,n)

)
. (20)

It is defined that the zigzag function takes the same value as the axial displacements at the interfaces, that is,

ϕ(k,n)(x, z)|z=z(k,n) = u(k,n)x (x, z). (21)

Substituting eq. (20) into eq. (21) and taking the limit as N tends to infinity yields

ϕ̂(k)(x, z) = lim
N→∞

u(k,n)x =

h
k−1∑
m=1

∫ z(m)

z(m−1)
dz

G(m)+
∫ z

z(k−1)
dz

G(k)

N∑
m=1

∫ z(m)

z(m−1)
1

G(m) dz

−
(
z +

h

2

)
, (22)

where ϕ̂(k) denotes the modified zigzag function whose slope is given by β̂(k) = ϕ̂
(k)
,z . From these functions, the

response fields are now expressed as

u(k)x (x, z) = u0(x) + zθ(x) + ϕ̂(k)(x, z)ψ(x), (23)

uz = w(x), (24)

ε(k)x (x, z) = u(k)x,x = u0,x(x) + zθ,x(x) + ϕ̂(k)(x, z)ψ,x(x), (25)

γ(k)xz (x, z) = u(k)x,z + uz,x = w,x(x) + θ(x) + β̂(k)(x)ψ(x), (26)

σ(k)
x (x, z) = E(k)(z)ε(k)x (x, z), (27)

τ (k)xz (x, z) = G(k)(z)γ(k)xz (x, z). (28)
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3 Main results

The results for the displacement and stress fields were obtained analytically for a simply supported FGM
beam subjected to a uniformly distributed load, where the effective moduli of elasticity are defined by

E(k)(z) = E
(k)
b +

(
E

(k)
t − E

(k)
b

)(
z − z(k−1)

z(k) − z(k−1)

)α(k)

, z ≤ 0, (29)

E(k)(z) = E
(k)
t +

(
E

(k)
b − E

(k)
t

)(
z(k) − z

z(k) − z(k−1)

)α(k)

, z > 0, (30)

G(k)(z) =
E(k)

2
(
1 + ν(k)

) , (31)

where E(k)
b and E

(k)
t denote the longitudinal moduli of elasticity at the bottom and the top of the kth layer,

respectively. The gradation index in the kth layer is represented by α(k). The Poisson ratio in the kth layer is
denoted by ν(k).

The laminate is composed of metal and ceramic, as shown in Table 1. The metal is arranged in the face layers,
while the ceramic forms the intermediate layer of the laminate, representing the rigid core of the structure.

Table 1. Composition of the FGM laminate

Layer Material E(k) (GPa) ν(k)

1 Metal 70 0,30
2 Ceramic 323 0,30
3 Metal 70 0,30

Regarding the geometric properties of the beam, it has a length-to-thickness ratio L/h = 10. The results
were produced for various layer thickness ratios, as detailed in Table 2.

Table 2. Layer thickness ratio

Thickness ratio Layer 1 Layer 2 Layer 3

1-2-1 h/4 h/2 h/4

1-1-1 h/3 h/3 h/3

2-1-1 h/2 h/4 h/4

2-2-1 2h/5 2h/5 h/5

The results obtained were validated against the work by Vinh [8], which addresses the theory of first-order
shear deformation and solves the problem numerically. The dimensionless parameters of thickness coordinate,
deflection, and stress are

z̃ =
z

h
, w̃(x) =

10Ech
3
0

q0L4
w(x), σ̃(k)

x (L/2 , z̃) =
h0
q0L

σ(k)
x (L/2 , z̃), (32)

where q(x) = q0 as it is a uniformly distributed load, Ec represents the longitudinal modulus of elasticity of the
ceramic and h0 = L/10.

Figure 2a illustrates the variation of the effective longitudinal modulus across the thickness for a 1-2-1 lam-
inate considering various grading indices. It is observed that for a grading index of zero, the effective modulus
corresponds to the core value, i.e., the ceramic. For grading indices greater than zero, the effective modulus transi-
tions from the modulus of the metal to that of the ceramic. Depending on how high the grading index is, the ceramic
modulus tends to be reached very quickly as the thickness coordinate approaches the metal-ceramic interface.

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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a) b) 

  
c) d) 

  
e) f) 

  
 

Figure 2. a) variation of the effective modulus across the thickness for a 1-2-1 laminate, b) maximum normalized
deflection versus grading index for different thickness ratios, c) maximum normalized deflection versus thickness
ratio between core and face, d) maximum normalized deflection versus length-to-total thickness ratio of the beam
for a 1-1-1 laminate, e) distribution of normalized axial stresses along the thickness for a 1-2-1 laminate, f) distri-
bution of normalized axial stresses along the thickness for a 2-1-1 laminate
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Figure 2b illustrates the relationship between maximum deflection and graded-index for various thickness
ratios. The curves exhibit higher slopes at lower graded-index values, with decreasing growth rates as the index
increases. The laminate with a 2-1-1 ratio shows the highest maximum deflection values.

Figure 2c depicts the maximum deflection versus the thickness ratio between the core and face of the laminate
for different graded indexes. At an index of zero, the maximum deflection remains constant regardless of hc/hf .
For indexes greater than zero, increasing hc/hf results in decreased maximum deflection values due to increased
structural stiffness. Notably, the highest maximum deflection values are observed at hc/hf = 0, indicating the
absence of a rigid core.

Figure 2d illustrates the maximum deflection versus the length-to-total thickness ratio of the beam for a 1-1-1
laminate. At L/h = 5, the maximum deflection values are nearly identical across all curves. As the ratio L/h
increases, the maximum deflection in the beam also increases, indicating greater deflection as the beam becomes
more slender. Moreover, higher grading indices correspond to higher maximum deflection values

Figure 2e displays the distribution of normalized axial stress along the thickness for a symmetric 1-2-1 lami-
nate, whereas Fig. 2f illustrates an asymmetric 2-1-1 laminate. In both cases, the stress distribution is linear across
the thickness when the grading index is zero. With higher grading indices, the stress profile becomes nonlinear in
the face layers while remaining linear in the core layer. Increasing the graded-index accentuates axial stresses at
the interfaces yet maintains continuity.

4 Conclusions

This study modified the RZT formulation to incorporate functional gradation using the fictitious sublayer
technique, applied to functionally graded laminated composite beams subjected to bending. The analysis compre-
hensively examined displacement and stress fields, varying parameters such as gradation index, layer thickness,
and beam length-to-total thickness ratio. Higher-graded index values and varying layer proportions were found to
intensify axial stresses at interfaces. The results showed strong agreement with existing literature, confirming the
effectiveness of the proposed RZT modification for static beam analysis.
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Maceió, Alagoas, November 11-14, 2024


	Introduction
	Methodology
	Main results
	Conclusions

