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Abstract. Composite materials are fundamental in contemporary engineering, standing out for their ability to 

combine different raw materials to create new materials with superior properties. Graphene, characterized by its 

two-dimensional flat carbon monolayer structure with a thickness of 0.34 nm, has gained considerable interest 

due to its remarkable mechanical, thermal and electrical properties. In particular, graphene derivatives, such as 

graphene nanoplatelets (GNP) and carbon nanotubes (CNT), have been widely explored as reinforcements in 

composites. Compared to CNT, GNP offers a more economical alternative and a larger surface area, available in 

various sizes, from nanometers to micrometers. Studies of micro-nanostructures reinforced with GNP have also 

evolved, presenting analyses of free vibrations, nonlinear bending and axial instability. This work proposes a 

variational formulation to model the static mechanical behavior of nanobeams reinforced with graphene 

nanoplatelets. The modified strain gradient theory of the micromechanical constitutive model, coupled with 

high-order beam kinematics, is developed to obtain the governing equations and their boundary conditions. The 

Navier procedure is used to develop an analytical solution for the problem. The results are compared with others 

in the specialized literature, and the proposed model is proven to be accurate. 

Keywords: Graphene Nanoplatelets; Modified Strain Gradient Theory; Nanobeams. 

1  Introduction 

The static behavior of size-dependent micro/nano beams can be modeled through various approaches, 

including Molecular Dynamics (MD) methods and higher-order continuum theories. The latter incorporates 

strain gradients or nonlocal terms, classical material constants, and additional material length scale parameters. 

While MD methods yield accurate predictions, their high computational cost makes higher-order continuum 

theories more prominent for modeling size-dependent structural issues. These theories trace their origins to 

Piola's pioneering work in the 19th century and the contributions of the Cosserat brothers in 1909 (Dell’Isola 

[1,2], Cosserat [3]). Subsequent developments have categorized these theories into strain gradient theories, 

microcontinuum theories, and nonlocal elasticity (Thai [4]).  
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Recent technological advancements have introduced functionally graded materials (FGM) in micro/nano-

electromechanical systems (MEMS/NEMS), as discussed by Witvrouw & Mehta [5], Mohammadi-Alasti [6] and  

Wei [7]. Graphene, a two-dimensional carbon monolayer, has garnered significant interest due to its exceptional 

mechanical, thermal, and electrical properties. Derivatives like graphene nanoplatelets (GNP) and carbon 

nanotubes (CNT) are widely studied as composite reinforcements, with GNP being a more economical 

alternative with a larger surface area (Yee [8]) . Sahmani advanced the studies by analyzing micro-nanobeams, 

as well as micro-nanoplates (GNPRC), focusing on the vibrational response and nonlinear bending of micro and 

nanobeams [9,10], as well as the axial instability of micro and nanoplates[11]. 

Therefore, this work advances the study of GNP by proposing a variational formulation to model the static 

mechanical behavior of micro-nanobeams GNPRC. A micromechanical constitutive model, based on the 

Modified Strain Gradient Theory and higher-order beam kinematics, is developed to derive the governing 

equations. The Navier procedure is employed to obtain an analytical solution to the problem. 

2  Mathematical Development 

2.1 Definitions 

Fig. 1 shows a simply supported beam reinforced with size-dependent graphene nanoplatelets (GNPRC), 

with the x  and z  axes representing the abscissa and ordinate axes, respectively. The beam has a height h  and a 

length L , and is subjected to a load ( )q x  and a dispersion pattern of U-GNPRC. 

 

Figure 1. Beam with distributed loading and dispersion pattern uniform.  

The volume fraction,
GNPV , corresponding to the GNP distribution patterns U-GNPRC can be expressed by 

eq. (1), as per [12]: 

 

( )( )
:  

1
− =

+ −
GNP
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(1) 

where 
GNP

W  is the weight fraction GNP, GNPρ and mρ  are the mass densities of the GNP and the matrix, 

respectively. 

According to the modified Halpin-Tsai micromechanical model (Yang [13] and Affdl & Kardos [14]), the 

effective Young's modulus, 
cE , and effective Poisson's ratio, 

cν , of nanocomposites with randomly oriented 

nano-reinforcements can be approximated by eq. (2): 

 

( ) ( ) ( )1 13 5
 1

8 81 1

1 12 2
   

L L GNP T T GNP

c m c GNP GNP m GNPk k

L GNP T GNP

GNP m GNP mGNP GNP

L L T T

GNP GNP m L GNP GNP m T

V V
E E V V

V V

E E E EL b

h E E h E E

λ η λ η
ν ν ν

η η

λ η λ η
λ λ

 + +  = + = + −    − − 
− −

= = = =
+ +

, ,

, , , ,

 (2) 

where 
Lλ  and 

Tλ are dimensionless parameters dependent on the geometry of the nano-reinforcement. 

Similarly, 
Lη  and 

Tη depend on Young's moduli of the matrix, nano-reinforcement, and dimensionless 
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parameters. 

2.2 Kinematics 

The present formulation assumes that the material is linearly elastic. Based on various beam theories, the 

displacement field is expressed by eq. (3): 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0
, 0, ,= − + = =

x ,x s y z
u x,z u x zw f z x u x,z u x,z w xφ  (3) 

where 
0u  is the axial displacement along the centroidal axis,

0w the transverse displacement along the centroidal 

axis, ( )f z  is a function that represents the distribution of high-order shear stress and strain along the depth of 

the beam (wich, in this work, uses the a function of Soldatos [15]), ( ) ( ) ( )0s ,x
x w x xφ ψ= +  is the angle due to 

shear. The subscripts following the comma represent the derivatives of the function. 

The linear elastic strain field can be expressed using eq. (4) and (5). 

 ( ) ( ) ( )1

, , ,

1 1
,   ,  ,

2 5
= + = = − + +s s s s

ij i j j i i mm i ijk ijk ij mmk jk mmi ki mmju uε γ ε η η δ η δ η δ η  (4) 
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where
ij

ε is the strain tensor, 
iγ  is the dilation gradient tensor, ( )1

ijkη  is the second-order displacement gradient 

tensor, 
s

ijk
η  is the symmetric part of the second-order displacement gradient tensor, and 

s

ij
χ  is the symmetric 

rotation gradient tensor. The constitutive relations for a linear elastic material are expressed in eq. (6). 

 ( ) ( )1 12 2 2

0 1 2
2 ,  ,  2 ,  2 ,2

s s

ij ij mm ij i ijk ijk ij iji
p l m llσ κδ ε µε τ µ η µ χµ γ′= + = = =

 
(6) 

where 
ijσ is the classical stress tensor, and ip , 

ijkτ , and s

ijm  are the higher-order stress tensors. κ  and µ  are the 

bulk and shear moduli, respectively. 
0l , 

1l , and 
2l  are the material characteristic lengths associated with the 

dilation gradient, the second-order displacement gradient, and the symmetric rotation gradient, respectively. The 

indexes ( ) ( ), , 1, 2,3 , ,i j k x y z= = , as well as the index ( )1,2,3m =  indicate summation when repeated, 
ijδ is 

Kronecker delta and 
ijke  permutation symbol. 

2.3 Governing equations 

The principle of minimum total potential energy Reddy [16] , is used to derive the governing equations, and 

eq. (14) describes its general expression: 

 ( ) 0,extU WδΠ δ≡ + =
 

(7) 

where U  is the strain energy and extW  is the external energy, described in eq. (15): 

 ( ) ( ) ( ) ( )1 1

0

1
( ) ; , ,

2

L
s s

ij ij i i ijk ijk ij ij ext zU p m dV W u x z q x dx
Ω
σ ε γ τ η χ= + + + = −   (8) 

To find the strain fields, substitute eq. (3) into eq. (4) and (5), and then use these results in the constitutive 

relations given by eq. (6). To apply the first variation of a functional, use the strain fields and the constitutive 

relations, and then substitute eq. (8) into eq. (7). 

We obtain the Euler equations in eq. (9) by applying the necessary condition for minimum total potential 

energy principle ( 0δΠ= ) and using the fundamental lemma of the calculus of variations: 
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where the constants iA  are presented in eq. (10): 
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(10) 

 

2.4 Analytical Solution 

The Navier procedure was used to solve the differential equations given by eq. (9). This procedure 
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approximates the response fields using periodic functions with separated variables. The boundary conditions for 

a simply supported beam are given by eq. (11), and the solution is assumed by eq. (12): 

 ( ) ( )0 0
0 0w w L= =

 
(11) 
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1 1 1

cos ,   cos , sin ,
i i
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     

  
 

(12) 

where NT  represents the number of terms in the series. The values of 0i
u , iψ , and 0i

w  are obtained by 

substituting eq. (12) into eq. (9) and solving the resulting algebraic system. 

2.5 Results and discussion 

Assuming a simply supported beam of heighth , length 20L h= , width 2b h= and subjected to a 

concentrated force midspan,P Nµ= 100 , was adopted. It is considered that the beam is made of GNPRC epoxy 

with the following properties:  1.44 GPa,  1.01 TPa, 1200 Kg/m³,m GNP mE E ρ= = =  

( ) ( )1062.5 Kg/m³,  0.38, 0.186,  % 0,1,  2, 4, 6, 8 e 10GNP m GNP GNPWρ ν ν= = = = , and the material length scale 

parameter l Nµ= 17.6 (Lam [17]) . The values ofP andh are chosen such that the beam remains elastic 

throughout  (Park [18], Ma [19]). For simplification, we assume that all three material length-scale parameters 

are the same, i.e. l l l l= = =
0 1 2

 , within the modified high-order strain gradient beam model of the present 

work. To recover the numerical results from the micro-scale Timoshenko beam model (Wang [20]) , we consider 

the weight fraction 0%GNPW = , and correction factor ( ) ( )5 5 6 5m mks ν ν= + + , as per Kaneko [21] . Fig. 2 

shows the results of the modified high-order strain gradient theory beam model and microscale Timoshenko 

beam models, which illustrate the deflection and rotation for three micro-scale 

relation, ,  and .h l h l h l= = =2 4  

                   

 

Figure 2- Deflections 
0

w  and rotations ψ of a beam GNPRC.  

It can be observed in Fig. 2(a) that the deflection predicted by the present model, using Soldatos' higher-

order beam theory, is smaller than that of the microscale Timoshenko model. This result indicates that the 

present model exhibits greater bending stiffness because higher-order theories consider the nonlinear variation of 

shear deformations and size effects, providing a more accurate representation of the response. Similarly, in Fig. 

2(b), the Soldatos model showed a smaller rotation compared to the microscale Timoshenko model due to the 

considerations addressed by higher-order theories. Additionally, the relationship between the beam height and 
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the length of the nano reinforcement significantly influences the responses; the more significant the beam height 

relative to the nano-reinforcement, the greater its bending stiffness and, consequently, the smaller the rotation. 

Furthermore, in Fig. 3(a)-(b), by introducing GNPRCs, there is an increase in bending stiffness and greater 

resistance to rotation.   

  

 

Figure 3- deflection 
0

w and rotation ψ  of the beam by varying the weight fraction. 

3  Conclusions 

A modified micromechanical strain gradient constitutive model, coupled with higher-order beam 

kinematics and reinforced with graphene nanoplatelets, has been developed based on strain gradient elasticity 

theory and the minimum total potential energy principle. This advanced model can capture deflections and 

rotations resulting from the size effect associated with material length scale parameters. Additionally, the model 

allows for the incorporation of nano reinforcements to enhance the mechanical properties of the beam. It is also 

possible to recover the microscale Timoshenko beam model from this approach concerning reference Lam [17]. 

The numerical results for deflection and rotation predicted by the new model were compared with those of the 

microscale Timoshenko beam model under different conditions, such as variations in beam height relative to 

characteristic length or in the weight fraction of the nano reinforcement. Finally, the proposed model provided 

consistent results with the higher-order formulation that was presented. 
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