
                                                                              

 

CILAMCE-2024 

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  
Maceió, Brazil, November 11-14, 2024 

Effective Strategies for Parameter Tuning in PINNs: From Lower to 

Higher Dimensional Solid Mechanics 

Flávio Valberto Barrionuevo Rodrigues1, Paulo de Mattos Pimenta1 

1Department. of Structural and Geotechnical Engineering, University of São Paulo 

Av. Prof. Almeida Prado, 83, 05508-070, São Paulo, São Paulo, Brazil 

flavio.brodrigues@usp.br, ppimenta@usp.com 

Abstract. In recent years, Physics-Informed Neural Networks (PINNs) have introduced a novel approach to 

solving partial differential equations (PDEs) using deep learning techniques. Despite the promising results and 

rapid advancements in the field, there is a lack of comprehensive studies on modeling choices within the deep 

learning framework, particularly in solid mechanics problems. In this study, we aim to explore the influence of the 

number and arrangement of neurons, activation functions, and weight initialization on the accuracy of results. We 

focus on elasticity problems in 1D, 2D, and 3D dimensions to establish a foundation for exploring further complex 

scenarios. Our findings indicate that studying hyperparameters in lower dimensions is an effective strategy for 

optimizing performance in higher-dimensional ones. 

Keywords: PINNs, solid mechanics, elasticity. 

1 Introduction 

Physics-Informed Neural Networks (PINNs), introduced by Raissi et al. [1], integrate physical equations into 

neural networks, enhancing interpretability and prediction by embedding residuals of these equations in the loss 

function. This allows for simultaneous updates of network weights and physical parameters, improving model 

performance. Unlike traditional numerical methods, PINNs avoid discretization errors due to their meshless nature, 

making them suitable for complex geometries Abueidda et al. [2]. They are also resilient to imperfect datasets, 

allowing applications in areas like geometric nonlinearity - Fuhg and Bouklas [3], hyperelasticity - Nguyen et al. 

[4], and fracture problems - Goswami et al. [5]. 

However, PINNs face challenges, including sensitivity to weight initialization, limited theoretical guidance, 

and difficulty in integrating heterogeneous data, leading to issues with training stability and computational 

efficiency. While advancements have been made by Wang and Zhong [6] and Psaros et al. [7], no unified 

framework for designing PINNs or selecting hyperparameters exists, limiting their broader applicability and 

requiring tailored approaches for different problems. Continued research is needed to improve their efficiency and 

address these challenges. As a result, different problems require tailored approaches, necessitating ongoing 

research to achieve better computational results for complex issues, which hinders the widespread application of 

PINNs. 

In this paper, the objective is to present insights into the tuning some of hyperparameters (weights 

initialization, activation function, neural network architecture) in PINNs for solid mechanics problems, exploring 

which of them have more impact on precision compared with reference solutions. We go through problems with 

different dimensions leveraging results from one to another. This procedure can help authors to optimize their time 

searching for better parameters while facing problems in higher dimensions. 
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2 PINNS BUILDING BLOCKS 

Building a PINN framework to solve a problem is not a difficulty task, indeed it is simple and straightforward. 

In this section, we present the details of the PINN methodology before providing the applications. The main 

ingredients in PINNs building blocks are: the selection of collocation points, the selection of neural network 

architecture, automatic differentiation, the loss function and the neural network training. Fig. 1 summarizes the 

process. For more detailed understanding and discussing on each component mentioned, we referrer to Cuomo et 

al. [8] and Ryu et al. [9].    

 

Figure 1. PINNs workflow. Adapted from Ryu et al. [9]. 

On establishing a general mathematical background which supports PINNs method, we may start with 

collocation points. At first, the collocation points are selected, then, a neural network architecture 𝒩(𝒛; 𝜽), as 

example a fully connected network, receives as input the coordinates vector 𝒛 = [𝒙, 𝑡] = [𝑥1, … , 𝑥𝑛 , 𝑡], 

representing space, time or both of them. After that, the approximation to the desired output is computed. Such 

neural network approximation of the output u is:  

𝑢̂𝜃(𝒛) ≈ 𝑢(𝒛).    (1) 

Where ûθ a neural network approximation realized with a set of neural parameters θ. At this stage, the 

automatic differentiation (AD) takes place to compute the derivatives needed for the governing equation. As each 

problem demands a specific loss function, they can be divided into four loss terms in PINNs: 𝐿0 for initial 

conditions, 𝐿𝑏 for boundary conidiations, 𝐿𝑓 for governing equations, and 𝐿𝑑 for labeled data within the 

computational domain, if it is available. 

A weighted sum of the four loss terms in eq. (2) can be used to represent the total loss function to be 

minimized during the neural network training. 

𝐿(𝜽) = 𝜔0𝐿0 + 𝜔𝑏𝐿𝑏 + 𝜔𝑓𝐿𝑓 + 𝜔𝑑𝐿𝑑 .  (2) 
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Here, g and f denote general arbitrary initial and boundary functions and also differential equations, 𝑁0 and 

𝑁𝑏 represent the number of collocation points for initial {𝐱0
i , t}𝑖=1

N0  and boundary conditions {𝐱b
i , tb

i }𝑖=1
N𝑏 , respectively. 

𝑁𝑓 denotes the number of collocation points in the domain, {𝐱𝑓
i , t𝑓

i }𝑖=1

N𝑓
. If there are additional labeled data available 

to include in the training, 𝑁𝑑 is denoting the number of these points in the computational domain, {𝐱𝑑
i , t𝑑

i }𝑖=1
N𝑑 . 
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According on the type of physics problem to be solved and the availability of data, some weights can be zero. 

Finally, to update the weights during the learning processes, PINNs need to define and optimizer. In the initial 

work of Raissi et al. [1], the Adam optimizer was chosen, which is a type of stochastic gradient descent algorithms. 

Moreover, BFGS, L-BFGS and L-BFGS-B can be applied, and the combination between them is also possible. 

Now, the solution of the governing equation is given by the optimal neural network parameter set 𝜽∗, that 

minimizes the loss function, eq. (7). 

𝜽∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝜃𝐿(𝜽).  (7) 

As we described the general PINN framework, Tab.1 briefly summarize how the change in each component 

enhance or disturb the performance. For readers interested in more details about those components’ details, Ruy 

et al. [8] must-know reference. It is important to mention, that the computational cost refers to training time and 

number of operations to reach the desirable accuracy. However, most important is to define a proper neural network 

architecture. As we can see, most of issues are related to this item, indicating that a good understanding about 

neural networks architectures can save time and computational effort. 

Table 1. PINNs components and their main related issues. 

Components Related issues 

Selection of collocation points Precision and computational cost 

Neural Network Architecture 

Problem’s nature, scalability, generalization, 

training efficiency, training parameters, and 

computational cost 

Loss function Precision and computational cost 

Differentiation Computational cost 

Training method Generalization and computational cost 

3     PINNS IN SOLID MECHANICS AND COMPLEX GEOMETRIES  

The field of computational solid mechanics relies heavily on numerical methods, as exact solutions are 

available only for linear and a few nonlinear problems. One well-established numerical method is the Finite 

Element Method (FEM), which can handle both linear and nonlinear problems. However, FEM struggles with 

incorporating data into the analysis, requiring more time to process and complete the analysis. PINNs are designed 

to solve either problems with or without data. 

Due to this, and other advantages, the application of PINNs in solid mechanics is an open study field. One of 

the first applications was made by Haghighat et al. [9] on modeling linear elasticity using PINNs. The same author 

proposed the mixed variables (displacement and stress) with individual networks for each. Moving to material 

properties, Abueidda et al. [10] integrated the potential energy functional and the residuals of the governing 

equations for hyperelasticity. 

For an extensive review of applications in solid mechanics, the authors refer to Faroughi et al. [11], Kim and 

Lee [12], and Cuomo et al. [13]. These researchers point out many application scenarios with different neural 

network architectures. Furthermore, we would like to address some other interesting examples. Bastek and 

Kochman [14] and Kairanda et al. [15] proved that PINNs are applicable to shells. 

Despite the advances and the great effort to broaden the applications, PINNs still face difficulties in more 

complex geometric domains, which are crucial for real-world problems. While methods such as signed distance 

functions and domain decomposition have been explored to introduce complexity, Faroughi et al. [11], they are 

mostly applied to 2D shapes. Extending these approaches to 3D surfaces remains challenging, especially in 

ensuring vector fields stay tangent to surfaces, as noted by Cuomo et al. [13]. 

PINNs are still in their infancy and are no match for the FEM. Grossman et al. [16] compared both methods 

in a variety of benchmark partial differential equations and had a special treatment to arrange a fair set up for it to 

provide coherent results. They concluded PINNs are not able to beat FEM considering processing time and 

accuracy. Nevertheless, they pointed out that PINNs were good at the transition into higher dimensions: there was 

no increment in computational cost from the Poisson equation in 2D and 3D. This hints at the efficiency of PINNs 

in certain high-dimensional settings, in which classical techniques are expensive. 



A study on Physics-Informed Neural Network’s parameters influences in solid mechanics problems. 

CILAMCE-2024 

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 

 

4     NUMERICAL EXPERIMENTS 

In this section, we present the main results related to the selected problems. Numerical examples are provided 

to demonstrate the performance PINNs while varying some hyperparameters. The examples are proposed in a way 

ones can infer relations between hypermeters and precision. Then, leverage the results for a high dimension 

problem. Thus, computational time and cost can be optimized. In these examples, we followed Haghighat et al.[9] 

scheme, matching each output field with his own neural network. 

The linear solid mechanics problems have the following governing equation 

𝜎𝑖𝑗,𝑗 + 𝑓𝑖 = 0, 𝑥 ∈  𝜴.  (8) 

Where σ is the Cauchy stress tensor, f is the body force per unit of mass. Alson considering small 

deformations, the stress tensor is calculated by 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖), (9) 

𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜀𝑘𝑘 + 2𝜇𝜀𝑖𝑗 . (10) 

Where 𝜆 and 𝜇 are the Lamé constants and 𝛿𝑖𝑗 is the Kronecker delta function. 𝜀𝑖𝑗 is the small strain tensor 

and u is the displacement. To solve the eq. (8), closed boundary conditions are required, which can be written as  

𝑢𝑖 = 𝑢̅𝑖, 𝑥 ∈  𝛤𝑢 ,  (11) 

𝜎𝑖𝑗𝑛𝑗 = 𝑡𝑖̅, 𝑥 ∈  𝛤𝑡 .  (12) 

Displacement and force are represented by u and t on the corresponding boundaries respectively, and n 

denotes the unit normal vector on the corresponding boundaries. So that, the problems to be studied are presented 

in the following Fig. 2.  

  

 

(a) (b) (c) 

Figure 2. a) bar under axial force, b) plate under stretching force, c) cube under stretching force. 

The loss function is one of the main ingredients of the problem. In this work, we adopted the collocation loss 

function, however there is the energy-based loss function Fugh and Bouklas [3]. The collocation loss function is 

straightforward and enforces the boundary conditions directly, what is important in PINNs-based computational 

solid mechanics problems.  

Thus, the collocation loss function is built summing up the Mean Square Error (MSE) from the governing 

equation and the boundary conditions, considering n as the total number of sample points, and m as the number of 

sample points on the traction boundary.  

𝐿 =
1
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∑ |𝜎𝑖𝑗,𝑗

𝑎 + 𝑓𝑖
𝑎| +

1
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𝑖=1 .𝑛

𝑖=1   (13) 

To quantify the prediction error in PINN scheme, we define the relative mean square (ReMS) error as follows: 

𝑒𝑅𝑀𝑆 =
1

𝑛
∑ (

𝜑𝑟𝑒𝑓,𝑖−𝜑𝑃𝐼𝑁𝑁,𝑖

𝜑𝑟𝑒𝑓,𝑖
)

2

.𝑛
𝑖  (14) 

Where φref,i and φPINN,i are the reference values, from analytical or FEM solutions, and PINN prediction 

variables respectively. The optimizer for the examples is L-BFGS-B. The next results were all tested on a 64-bit 

Windows system with an Intel® seventh gen Core i5™ -7200U CPU (2.50GHz) and 16 GB memory ram.   
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4.1   Stretching linear rod  

Herein, to complete the analysis, a 1D tensile load in x direction is applied on a linear elastic rod. The problem 

configuration is given in Fig. 2a. The length of the rod is 1 m, the Young’s modulus E = 10 Pa, the area (A) is 

equal to 1 m². A stretching force 𝑡̃ = 1 N is applied at the right end of the rod. So that, the equilibrium equations 

and the applied boundary conditions are 𝑢(𝑥 = 0) = 0, 𝜎𝑥(𝑥 = 𝑙) = 1 and 𝜎𝑥,𝑥 = 0, 𝑥 ∈ [0,1]. In this case, we 

have the analytical solution, eq. (11), in terms of displacement u(x) 

𝑢(𝑥) =
𝑥𝑡

𝐸𝐴
. (15) 

The Fig. 3 summarizes the main between distribution of neurons (width or deep) and ReMS, also including 

different weights initialization methods and activation functions. The simulation was carried out with 51 equally 

spaced sample points. 

  

(a) (b) 

Figure 3. Rod simulation with a) width neural networks, b) deep neural networks. 

4.2    Stretching square plate  

The program is extended to a 2D plate under stretching in plane stress condition. The configuration of the 

problem is shown in the Fig. 2(b) below. The length of the plate is 2 m and a distributed force 𝑡̃(𝑦)is applied on 

the right side of the plate. 

𝑡̃(𝑦) = 𝑠𝑖𝑛 (𝜋 −
𝜋𝑦

2
) . (16) 

The boundary conditions are 𝑢(0, 𝑦) = 𝑣(𝑥, 0) = 0. In this problem, the Lamé constants are calculated 

through eq. (17) 

𝜆 =
𝐸𝜐

(1+𝜐)(1−𝜐)
, 𝜇 =

𝐸

2(1+𝜐)
. (17) 

Setting 7 Pa and 0.3 to Young’s modulus and Poisson’s ratio. To compare the results with FEM numerical 

software, a fine mesh from ABAQUS was used as reference, where quadratic elements are 0.005 m equally spaced. 

This problem is interesting to explore because the stress concentration of 𝜎𝑦 at the bottom right corner of the plate 

can represent a test for PINNs accuracy while facing these features.  

The main results are presented in Fig. 4. Leveraging the results in section 4.1, we only simulated the 

combination between gelu activation function and Glorot Normal weights initialization for the neural network 

architecture, expecting to extract hints about stresses and displacements fields. The domain was subdivided into 

2601 sample points. 
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4.3   Stretching in 3D 

A cube under axial tension is taken as model to verify PINN’s performance in space and symmetrical 

properties. The configuration is shown in Fig.2(c). The cube size is 2 m and a distributed force 𝑡̃(𝑥, 𝑦) ,eq. (18), is 

applied on the surfaces. 

𝑡̃(𝑥, 𝑦) = 𝑠𝑖𝑛 (𝜋 −
𝜋𝑥

2
) 𝑠𝑖𝑛 (𝜋 −

𝜋𝑦

2
) . (18) 

The boundary conditions are given as 𝑢(0, 𝑦, 𝑧) = 𝑣(𝑥, 0, 𝑧) = 𝑤(𝑥, 𝑦, 0) = 0. The material parameters are 

10 Pa and 0.25 for Young’s modulus and Poisson’s ratio. The weights initialization method (Glorot Normal), 

activation function (gelu), number of layers (5) and neurons per layers (16) were customized based on the results 

from previous 2 sections. Overall, 9260 sample points were generated. A fine mesh, element size equal to 0.01, 

was applied in the commercial software ABAUQUS for comparison.  The total simulation time was about 4512 s 

for a total number of iterations in 5001, the final loss converged to 0.2906. The results are summarized in Fig. 5. 

  

(a) (b) 

Figure 4: Plate problem results for: a) width neural networks, b) deep neural networks. 

  

(a) (b) 

Figure 5: 3D problem displacement field U results for (a) FEM, (b) PINN.  

5    CONCLUSIONS AND DISCUSSIONS 

Tuning parameters in neural networks is a challenging field, particularly when identifying the optimal settings 
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for different problem types. In this study, we explored neural network configurations by analyzing progressively 

complex toy problems. We used separate neural networks for each displacement field, which provided control 

over neuron count and allowed extension to asymmetrical cases. Deeper neural networks consistently 

outperformed wider ones, and using the gelu activation function with Glorot Normal weight initialization yielded 

stable outcomes. 

In the plate problem, we observed instability for tension in the y-direction with a deep neuron configuration. 

This insight informed the neural architecture selection for subsequent problems. Higher-dimensional problems 

presented significant computational challenges due to the "curse of dimensionality." Though our 3D example 

produced good results, computational time remains a concern. 

Studying lower-dimensional problems to inform hyperparameter tuning for more complex cases may offer 

an efficient strategy for reducing effort. Future work should focus on refining the tuning process for PINNs to 

enable their application to more complex problems. 
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