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Abstract. This work aims to explore alternatives to represent local effects, such as local buckling and plasticity, 
in low order models of thin-walled rod members. The discussion is carried out on a theoretical-numerical level, 
and a few illustrative examples are provided. The techniques that are explored stem from two different approaches: 
(i) direct enrichment of the rod kinematics and (ii) multiscale methods. Direct enrichment of low order kinematics 
usually leads to models with optimal computational cost, while still at the downside of having lower-order (still 
limited) kinematics. Models derived from the Generalized Beam Theory (GBT) are an example of such an 
approach. Multiscale methods, in turn, rely on results of higher-order theories (e.g., shells and 3D solids) to 
improve the performance of the lower-order model. The associated computational cost and accuracy vary widely 
with the imposed coupling level between the different scales. It is possible to have models ranging from full 
coupling at run-time – the so-called strong coupling multiscale method – to no coupling at all – the higher-order 
models are used only to compute meaningful mechanical quantities that are passed on to the low order model at 
some point. The work is an on-going development of a PhD research by the first author, and the provided results 
are partial. 
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1  Introduction 

In real-life applications, computation time constraints play a major role in the numerical representation of 
mechanical processes. In an attempt to limit computational costs, low-order or reduced-order models (ROMs) can 
be employed, given that the most important aspects of the analyzed problem are usually captured. Structural 
engineers are used to recur to ROMs in daily design practice, since the so-called structural theories (truss, beam, 
plates, shells, etc.) are a simplification of the complete continuum mechanics: from 3D solid mechanics, 
kinematical and material assumptions are imposed, thus conveniently reducing the dimensionality of the problem, 
whilst limiting to some extent prevision capabilities.  

However, for the increasingly challenging tasks proposed by modern engineering, traditional simplified 
models often no longer suffice to produce the desired accuracy and safety level, forcing research teams to develop 
more robust (hierarchically superior) models. A wide array of options are available to improve existing models: a) 
abandon some of the assumptions and increase the problem dimensionality (e.g., go from rod models to plate/shell 
models or from plate/shell to 3D-solid models); b) weaken the constraints of the kinematical and material 
assumptions (e.g., allow torsional warping in rods, material anisotropy or inelasticity, etc); c) employ refined 
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models to generate high-fidelity simulations, then extract relevant information of the phenomenon of interest and 
represent it in terms of ROM degrees-of-freedom (DOFs) (e.g., multiscale and multiscale-like techniques). 

In the case of 3D frame structures consisted of thin-walled members, modeling local effects (such as those 
arising from cross-sectional distortion, from either material or geometrical causes) is particularly intricate, since 
there is an explicit violation of the usual rigid cross-section assumption. Moreover, for steel or aluminum members, 
inelastic behavior is often present and the coupling among local geometrical and material effects is a common 
scenario. Also, it is a source of concern in structural design, since this kind of phenomenon can dictate the load 
bearing capacity of the member. 

In this work, we present some recent developments of an ongoing research about the incorporation of such 
local effects within a ROM (rod) framework. We intend to explore alternatives to robustly estimate critical/ultimate 
loads (including plastic behavior) and compute the full equilibrium path of the structure, even when far from initial 
configurations, while also pointing out aspects that are under development and needing further exploration. 

2  Kinematically exact rod model with torsional warping DOFs and polyconvex 
hyperelastic constitutive equation 

Three-dimensional kinematically exact rod models have been in development for the past four or five decades 
and have reached a significant level of maturity. One should mention the pioneering works from Simo and Vu-
Quoc [1], [2], studies on finite rotations from Ibrahimbegovic and Frey [3], [4], correction of Simo’s work from 
Pimenta and Yojo [5], inclusion of torsion warping from Pimenta and Campello [6], introduction of advanced 
hyperelastic constitutive equations from Campello and Lago [7], and the more recent work from Kassab and 
Campello [8]. It is also worth mentioning the kinematically exact Bernoulli-Euler-like rod theory from Pimenta 
and Silva et al. [9]. Other relevant works, that follow similar developments, but differ on some theoretical choices 
(e.g. rotation parametrization, construction of warping function, conjugated stress-strain pairs, etc) should be cited, 
such as Crisfield [10], Gruttman et al [11], [12] and Gonçalves [13], to cite just a few. The geometrical exactness 
of this kind of model follows fig. 1a). 

Given an initial reference system {𝒆ଵ
௥ , 𝒆ଶ

௥ , 𝒆ଷ
௥}, where < 𝒆ଵ

௥ , 𝒆ଶ
௥ >  spans the cross-sectional reference plane 

and 𝒆ଷ
௥  is the axial direction, and a current reference system {𝒆ଵ, 𝒆ଶ, 𝒆ଷ}, one can define the initial 𝝃 and current 𝒙 

configurations as 

 𝝃 = 𝒂௥ + 𝜻,    𝒙 = 𝜻 + 𝒖 + 𝑸𝒂௥ + 𝒘 (1) 

where 𝒂௥ = 𝜉ఈ𝒆ఈ
௥  is the coordinate of cross-sectional points, 𝜻 = 𝜁𝒆ଷ

௥ is the axial coordinate, 𝒖 is the axial 
displacement, 𝑸(𝜽) is the cross-sectional rotation tensor, parametrized by the Euler-Rodrigues formula, and 𝒘 =

𝑝𝜓𝒆ଷ is the warping displacements, with shape function 𝜓 and intensity 𝑝, and 𝒆௜ = 𝑸𝒆௜
௥. One can define frame-

invariant generalized back-rotated stress and strain conjugated pairs. In e.g. Kassab and Campello [8] one can find 
the explicit expression for 𝜼௥ (shear and axial strains), 𝜿௥  (bending and torsion curvatures), 𝑝 and 𝑝ᇱ, which are 
respectively conjugated to 𝒏௥ (shear and normal forces), 𝒎௥ (bending and torsion moments), 𝑄 (bi-shear) and 𝐵 
(bi-moment). It is convenient to define the generalized displacement, strain and stress vectors 𝒅 = [𝒖  𝜽  𝑝]், 𝜺௥ =

[𝜼௥  𝜿௥   𝑝  𝑝ᇱ]் and 𝝈௥ = [𝒏௥  𝒎௥  𝑄  𝐵]். One can write the weak form of the equilibrium equations and its 
linearization in terms of 𝒅, 𝜺௥ , 𝝈௥ and their virtual counterparts (see [8] for the complete expressions). The last 
missing ingredient in this context is the constitutive equation. Assuming that the material is hyperelastic, there is 
a potential function Ψ௘ = Ψ௘(𝜺௥) so that 

 𝝈௥ =
డஏ೐

డ𝜺ೝ ,   𝑫 =
డమஏ೐

డ𝜺ೝమ   (2) 

where 𝑫 is the material tangent stiffness matrix. In practice, it is shown in Campello and Kassab [8] and 
Dasambiagio et al.[8], [14] that one can take any hyperelastic material defined in terms of the second Piola-
Kirchoff stress tensor and the invariants of right Cauchy-Green strain tensor, and perform appropriate cross-
sectional integration to arrive at cross-sectional resultants. A usual choice is a linear elastic relation, or truncated 
versions of finite strain materials (such as Saint-Venant’s and Simo-Ciarlet’s materials). However, as shown in 
Campello and Lago [7] and Campello and Kassab [7], [8], this simplistic choice does not allow for correct strain 
coupling, and buckling modes featuring coupled compression, torsion and warping strains are usually not detected, 
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and post-buckling equilibrium path is usually wrong. To correct this, Kassab and Campello employed the complete 
(i.e., non-truncated) version of Saint-Venant’s and Simo-Ciarlet’s materials, obtaining very good results for 
complex cases. Of course, the aforementioned model is blind to local effects such as web/flange buckling and 
plasticity, but it provides a solid foundation to elastic instability, from which further developments can be carried 
out. 

3  GBT-based enrichment of kinematical assumptions 

The first strategy to be explored here consists in taking eq. (1) and allowing a more comprehensive 
kinematics. Within the author’s research group, Pimenta and Campello [15] and Dasmbiagio et al. [14] have 
already explored how to include additional deformation modes to allow for cross-section deformation. For thin-
walled rods, another possible approach is to extend the Generalized Beam Theory (GBT) from Schardt [16]  to the 
fully kinematically exact context. It should be mentioned the efforts from Gonçalves et al. [17], that have already 
published works in this direction. Despite the great results achieved, the employed constitutive equations are 
truncated versions of the Saint-Venant’s material, associated to a simplified description of secondary (through wall 
thickness) shell bending rotation. As discussed in section 2  this can have a destructive effect on the capacity of 
correctly coupling strain terms, leading to incorrect determination of critical load and post-critical paths. Thus, we 
are developing an alternative formulation that will allow the local shell bending rotation to be calculated according 
to finite rotation Kirchoff-Love shell theories, using as parameters only rod DOFs (see fig.  1b)). This yields a new 
expression for the current configuration as follows 

 𝒙 = 𝒙 = 𝒙௠ + 𝒙௛, with 𝒙௠ = 𝜻 + 𝒖 + 𝒚௠,  𝒙௛ = 𝒉  (3) 

where 𝒚௠ = 𝒂௠ + 𝒗௠ + 𝒘௠ is the cross-sectional mid-line displacement, with rotation 𝒂௠ = 𝑸𝒂௠௥, in and out-
of-plane distortions given by linear combinations of the in- and out-of-plane displacement modes 𝝓ఉ and 𝝍, 
respectively, and associated amplitudes 𝒓 and 𝒑, yielding 𝒗௠ = ൫𝝓ఉ ∙ 𝒓൯𝒆ఉ and 𝒘௠ = (𝝍 ∙ 𝒑)𝒆ଷ, and secondary 
shell-bending rotation 𝒉 = 𝑸௛𝒉௥, with 𝑸௛ = 𝑸௛(𝒖, 𝜽, 𝒑, 𝒓). The process of defining cross-sectional shape 
functions can be taken as an adaptation of the one from GBTUL [18], with a post-process stage to separate pure 
in- from out-of plane modes. 

The weak form of the equilibrium and its linearization can be written as a function of (𝒖, 𝜽, 𝒑, 𝒓), which are 
rod-level degrees of freedom, characterizing the 1D nature of the proposed formulation. The full expression for 
the residual and tangent stiffness will not be presented here since this is a work in progress, and adjustments are 
expected to occur during the process. It can be said for now that, as consequence of eq. (3), the strain field can be 
additively decomposed in mid-line and out-of-mid-line (shell-bending) terms, and new stress resultants, conjugated 
to 𝜼௥, 𝜼௥ᇱ, 𝜿௥ , 𝜿௥ᇱ, 𝒑, 𝒑′, 𝒑ᇱᇱ, 𝒓, 𝒓′, 𝒓ᇱᇱ, shall be defined.  To formulate and implement this model in a hyperelastic 
context is the main goal of the first author’s PhD research. It is expected that local buckling effects will be 
inherently represented, along with the global buckling behaviour (already enabled). This is a challenging task, with 
good prognostics and has been discussed in Cilamce-2023 (proceedings not yet available). 

 
a) 

 
b) 

Figure 1. Kinematics of rod with cross-sectional rigid-body motion and a) torsional warping only; b), in- and 
out-of plane distortion. 
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4  Multiscale techniques  

Given the complex nature of finite-displacement theories, and the difficulties of representing local geometric 
and material (e.g., plastic) effects directly in rod formulations, one promising framework is multiscale and 
multiscale-like modelling. This approach allows for more robust calculations in a finer (micro) level, that are then 
transported to the macro-level, which is in general the one of interest of engineering applications. Many 
developments are possible, and in this section we will discuss how some of them can be applied to thin-walled rod 
members. 

4.1 Parameter inference of constitutive parameters 

The simplest technique is a multiscale-like approach assuming at the macro (rod model) level a pre-fixed 
function for material law, building the representation of the “micro”-level (a finer 3D-solid or shell model) for one 
rod element, and applying various boundary conditions. Then, match material parameters from the macro-scale 
material law to the ones measured in this set of micro-scale simulations. A framework for hardening-softening 
elastoplastic rods, accounting for local effects was idealized by Dujc et al. [19] for the small-strain 2D case, 
extended to finite strain softening rods in Ibrahimbegovic et al. [20] and Ljukovac et al. [21].  We have adapted it 
further to the elastoplastic hardening case of 3D rods with torsional warping, operating at macro-level with only 
cross-sectional stress-resultants. This work is under submission to an archival journal, thus cannot be referenced 
here yet. In summary, one has an additive decomposition of the free energy function in an elastic and a hardening-
plastic part Ψ(𝜺௥௘ , 𝝃௛) = Ψୣ(𝜺௥௘) + Ψ௛(𝝃௛) and of the total generalized strain measure 𝜺௥ = 𝜺௥௘ + 𝜺௥୼, where 
𝝃௛ is strain-like internal hardening variable. Similar to usual stress, one can define hardening-stress and tangent 
matrix 𝒒௛ ≔ −Ψ

,𝝃೓
௛  and 𝑲௛ ≔ −Ψ

,𝝃೓డ𝝃೓
௛ . 

Further assuming a linear hardening constitutive equation, with a diagonal hardening tangent matrix, one can 
write simply 𝑲௛ = diag(𝐾ଵ

௛ … . 𝐾଼
௛) and 𝒒௛ = −𝑲௛𝝃௛. Here, two yield function alternatives are presented: 

independent stress resultant formula 𝝓(ଵ) and interaction formula 𝝓(ଶ) 

 
𝝓(ଵ) = ൣ𝜙ଵ

(ଵ)
… 𝜙଼

(ଵ)
 ൧

்
, with 𝜙௜

(ଵ)
= |𝜎௜

௥| − ൫𝜎௜
௬

− 𝑞௜
௛൯,

𝝓(ଶ) = ൣ𝜙(ଶ)൧, with 𝜙ଶ = ∑ 𝑠௜௜ୀଵ,଼
ଶ

− 1 and 𝑠௜ =
หఙ೔

ೝห

ఙ
೔
೤

ି௤೔
೓ ,

   (4) 

where 𝜎௜
௬ (𝑖 = 1,8) are the initial-yield stress-resultants for pure stress-resultants configurations (pure tension, 

pure compression, pure bending, etc.). Plastic flow equations are derived from the maximum plastic dissipation 
principle, for a dissipation  𝐷 = 𝝈௥ ⋅ 𝜺̇௥ − Ψ̇, subjected to constraints given by the set of yield functions 𝝓. By 
employing the Lagrange multipliers method, with multipliers 𝜸̇, with KKT conditions 𝛾௜ ≥ 0,  𝛾௜𝜙௜ = 0 and 𝜙௜ ≤

0, along with consistent plastic flow condition 𝛾௜𝜙̇௜ = 0 associated to , it can be restated as a unconstrained 
optimization problem. Thus, the problem to be solved is, given ℒ(𝜸̇, 𝝈௥ , 𝒒௛) = −𝐷 + 𝜸̇ ⋅

𝝓(𝝈௥ , 𝒒௛), min
𝜸̇,𝝈ೝ,𝒒೓

(ℒ) , 𝛾௜ ≥ 0,  𝛾௜𝜙௜ = 0, 𝜙௜ ≤ 0. The complete mechanical problem is solved in a staggered 
procedure (operator split, see Ibrahimbegovic [22], [23]), which requires a local phase computation for finding 
𝜸̇, 𝝈௥ , 𝒒௛ in the plastic process, and a global procedure that renders the consistent elastoplastic modulus 𝑫௘௣, that 
must be used instead of usual 𝑫 from elastic computation when plasticity is progressing. 

In order to complete the description of the model, one must know, besides the usual elastic parameters, the 
hardening parameters 𝐾௜

௛ and 𝜎௜
௬. This is when idea from Dujc [19] is employed: first, build pure stress-state 

micro-level models with refined 3D finite strain solid or shell elements capable of handling plastic hardening, with 
a representative length 𝐿௥௘௙. Then, increase load/displacement, taking note of the load level in which a) yielding 
begins (characterizing the initial-yield 𝜎௜

௬) and b) a limit-point is found (characterizing the ultimate load 𝜎௜
௨). 

Lastly, compute  𝐾௜
௛ so that the plastic work 𝐸௣ performed between 𝜎௜

௬ and 𝜎௜
௨ in micro-scale simulations matches 

the one for the chosen hardening law for macro-level, assuming that macro-scale also shares the same values of 
𝜎௜

௬ and 𝜎௜
௨. 

 𝐾௜
௛ =

ఙ೔
ೠమ

ିఙ೔
೤మ

ଶா೛
𝐿௥௘௙  (5) 

In the upcoming journal paper, several cases were tested for a given cross-sectional shape, and it was notable 
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the accuracy of the proposed framework, even for complex cases. In Fig.  2, one test example is shown, having a 
full-scale Ansys Shell 181 element solution as reference. Moreover, it was accessed the important of using a yield 
function with proper stress coupling, being evident that the simplistic 𝝓(ଵ) tends to dangerously underestimate 
critical loads for strongly coupled stresses in plasticity. In Fig. 3, it becomes conspicuous how local bending 
effects, altogether with plasticity evolution, plays a crucial role in the global cross-sectional behaviour, and, in Fig. 
4, it can be seen the robustness of the proposed approach to capture such complex structural pattern. 

4.2 Weak multiscale coupling: homogenization 

This approach consists in assuming that, a scale separation exists in such a way that it is possible to evaluate 
stress/strain and energy in the macro-scale integration points by constructing micro-scale mesh of a representative 
volume element (RVE), apply boundary conditions at this micro-model that corresponds to the actual macro-scale 
stress/strains in an average sense. This can be done either at runtime, or in a pre-processing phase, in which several 
cases are tested and approximations of the internal energy function are determined to be directly used during 
macro-level computation.  

A formulation using the latter is under implementation for the elastic case: assuming a macro-level rod model 
as the one from section 2 . Micro-scale simulations are performed to obtain total internal energy Ψ௘. Calculating 
the equivalent generalized rod strains at the rod integration point, one can build a function approximation for Ψ௘ 
as function of 𝜺௥. Afterwards, once function Ψ௘ becomes known, the expressions that are derived from Kassab 
and Campello [8] can be directly employed, by using the definitions from eq. (2). In practice, several simulations 
using finite strain solid elements are needed, with an RVE equivalent to a whole finite rod element are performed, 
imposing various generalized rod displacements, and a Deep Neural Network is trained to this task. Currently, the 
first batch of training values from micro-scale simulation is being generated. 

 

Figure 2. Geometric characterization of the stress-resultant-based elastoplastic rod model (ex. 4.2). 

Figure 3. Micro-scale simulations for plastic parameter estimation. 

4.3 Strongly coupled multiscale  

The last technique that is discussed here is the strongly multiscale approach. In this context, both macro and 
micro-level meshes coexist in the complete domain of the problem, sharing interface nodes. Solution is carried out 
in a staggered manner, in which for the best iterative guess of displacements of the macro-scale DOFs, micro-scale 
meshes are solved by imposing either stress or displacements, and both residual and tangent stiffness are calculated 
by static condensation of the micro-level linearized equilibrium equation. This approach is technically viable and 
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robust but would not decrease the total amount of degrees of freedom of reticulated structures, since the amount 
of interface nodes is small (only at the edges of the rod element). Therefore, it has been left aside on behalf of the 
developments from section 3 , 4.1 and 4.2. 

 
a) 

 
b) 

 
c) 

Figure 4. Displacements at the free end of the ex. 4.2. a) Lateral, b) vertical and c) axial displacements 

5  Conclusion 

We have displayed several alternatives for simulating local effects in thin-walled rod models. From previous 
experience, it was clear that there was space for development of ROMs with robust capabilities, and that both 
geometrical and material (e.g., plastic) local effects are pivotal to correctly ascertain structural capacity. Different 
approaches were shown, from frameworks that were already developed and successfully tested, to works in 
development or even to conceptual insights with potential to be tested in the near future. We hope to be able to 
present some of these results during the conference.  
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