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Abstract. Single/double nanobeams (nanowires) have attractive features including reduced sizes and high 
flexibility and conductivity. As a result, many engineering applications such nanoelectromechanical systems 
(NEMS) and biomedical devices have been developed in technology industries. Due to the extremely high surface 
area-to-volume ratio, the properties of nanobeams have size-dependent behavior. In this paper, elastically 
connected double nanobeams are represented on Eringen’s nonlocal elasticity theory. Each nanobeam of double 
beam is modeled as Euler-Bernoulli beam and the interconnecting layer is represented by a Pasternak’s elastic 
foundation model. A four-node double-beam finite element with eight degrees of freedom using approximate 
functions to interpolate transverse displacements and rotations is derived where both stiffness matrix and load 
vector are explicitly shown. The present FEM solution is validated by numerical examples where the influence of 
effects of dimensionless small-scale parameters, boundary conditions, and shear parameter of Pasternak foundation 
on displacements and stress resultants of double nanobeams are investigated. 

Keywords: FEM, Two-Parameter Foundation, double nanobeams. 

1  Introduction 

Nanomaterials have intensely stimulated the interest of the scientific researcher’s communities in physics, 
chemistry, and engineering. Due to nanoscale dimensions, their special properties need to be investigated and 
nonlocal differential elasticity  has gained more popularity among researchers as compared to the nonlocal integral 
elasticity, as example Eringen’s nonlocal theories [1]. Murmu and Adhikari [2] interoduced a nonlocal double-
elastic beam model, and used it to Analyse size effects on the free vibration of double-nanobeam systems. 

A notable class of engineering problems is concerned with the structures resting on an elastic type foundation, 
that had been initially simulated by an one-parameter linear model, introduced by Winkler (1867), consideredering 
the simplest and the most widely used, As an improvement, models of two and three elastic parameters had been 
established to deal with the basic disadvantage of Winkler’s model, which is the displacements’ discontinuity on 
the boundary being the example Pasternak (1954) and Kerr (1964). 

The studies envolving the problems about the suitability of the generalized continuum theories for the 
simulation of the micro- and nano-materials, more specifically double or multiple nanobeams systems, are 
growing, approaching issues relating to, bending problems, transverse vibration of double systems [2], 
eletromechanical stability [3], the consideration of elastic médium by a Hamiltonian method [4], graded double-
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nanobeam system [5] analytical solutions of double-system with viscoelastic layer between [6], multiple-
nanobeams system coupled by Winkler elastic layer [7] and a nonlocal finite element model [8] aiming about the 
complexity of carrying out experiments can be costly and technically demanding, making cientists resort to other 
models that satisfactorily address the problem.In the present work, finite element formulation for nonlocal 
elasticity approach of Euler–Bernoulli beam theory have been reported, where double-nanobeam system is 
interconnected by a two parameter elastic foundation by employing the Bubnov–Galerkin method. 

2  Mathematical representations 

2.1 Nonlocal elasticity theory 

The theory of nonlocal elasticity, which has as one of its precursors Eringen, and the nonlocal stress and 
strain tensorm differential formo f the nonlocal characteristics can also be seen in Rahmani et al. [9]. Thus, the 
nonlocal constitutive relationship (to obtain the constitutive relation of the local theory, simply set the nonlocal 
parameter 𝑒0𝑎 = 0) is expressed as: 

 

𝜎௫௫ − (𝑒𝑎)ଶ
𝜕ଶ𝜎௫௫

𝜕𝑥ଶ
= 𝐸𝜀௫௫ (1) 

 
where 𝜎௫௫ is the axial normal stress, E is the elasticity modulus, 𝜀௫௫ is the axial strain and (𝑒𝑎)ଶ can be 

simplified as the constant nonlocal parameter 𝜇. The stress resultants can be written in terms of displacements as: 
 

𝑀௫ = −𝐸𝐼
𝜕ଶ𝑤

𝜕𝑥ଶ
− 𝜇𝑞 (2) 

where w and q are the transversal displacements and transversal load, respectively. 

2.2 Double nanobeam system 

Some hypotheses support the system of parallel nanobeams elastically connected by a connection layer. The 
main assumptions of the Euler-Bernoulli beam are: a) transverse normal stress is small compared to axial normal 
stress; b) straight lines that initially are normal to the mid-plane of the beams remain straight during the bending 
process; c) beam is made of a linear elastic, isotropic, homogeneous material (governed by Hooke’s constitutive 
law); and, d) displacement, rotation, and strain are assumed to be smooth (small) fields. 

The connecting layer is assumed to be a system of mutually independent and is adopted Pasternak’s model 
to represent the nanobeam model, where linearly-elastic springs combined with shear layer  

The representation of a model of a system of nanobeams with equal lengths L and subjected to distributed 
loads 𝑔ଵ(𝑥) and 𝑔ଶ(𝑥), can be seen Fig. 1.  

 

Figure 1. Double-nanobeam between Pasternak elastic layer under distributed load. 
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The force balance equations of the upper and lower nanobeam can be written as: 
 

𝐸ଵ𝐼ଵ𝑤ᇱᇱᇱᇱ + 𝐾௪(𝑤 − 𝑣) − 𝐺(𝑤ᇱᇱ − 𝑣ᇱᇱ) 
 

+𝜇ଵൣ−𝐾௪(𝑤ᇱᇱ − 𝑣ᇱᇱ) + 𝐺(𝑤ᇱᇱᇱᇱ − 𝑣ᇱᇱᇱᇱ) + 𝑔ଵ′′൧ = 𝑔ଵ (3) 

𝐸ଶ𝐼ଶ𝑤ᇱᇱᇱᇱ − 𝐾௪(𝑤 − 𝑣) + 𝐺(𝑤ᇱᇱ − 𝑣ᇱᇱ) 
 

+𝜇ଶൣ𝐾௪(𝑤ᇱᇱ − 𝑣ᇱᇱ) − 𝐺(𝑤ᇱᇱᇱᇱ − 𝑣ᇱᇱᇱᇱ) + 𝑔ଶ′′൧ = 𝑔ଶ (4) 

 
where 𝐸ଵ, 𝐼ଵ, 𝑤 and 𝜇ଵ are Young’s modulus, moment of inertia, transverse displacement of the upper beam and 
nonlocal parameter respectively. 𝐸ଶ, 𝐼ଶ, 𝑣 and 𝜇ଶ are the respective counterparts of the lower beam. 𝐿 is the beam 
length. 𝐾௪ is the spring coefficient and 𝐺 is the coefficient of shear layer of the Pasternak’s model. 

In order to derive the double-nanobeam finite element, interpolation functions must be assumed to both 
displacements and loading. Using a nondimensional parameter 𝜉 = 2𝑥/𝐿 , the transverse displacements of upper 
and lower beams can be interpolated as follows 

𝑤(𝜉) = [𝑁]{𝑢ଵ} = [𝑁ଵ(𝜉) 𝑁ଶ(𝜉) 𝑁ଷ(𝜉) 𝑁ସ(𝜉)] ൞

𝑑ଵ

𝑑ଶ

𝑑ଷ

𝑑ସ

ൢ (5) 

𝑣(𝜉) = [𝑁]{𝑢ଶ} = [𝑁ଵ(𝜉) 𝑁ଶ(𝜉) 𝑁ଷ(𝜉) 𝑁ସ(𝜉)] ൞

𝑑ହ

𝑑

𝑑

𝑑଼

ൢ (6) 

 
where [𝑁] denotes the row matrix containing 𝑁 functions. In this paper, approximate interpolation functions for 
displacements of the Euler-Bernoulli double beam system are assumed to be  
 

𝑁ଵ(𝜉) =
(𝜉 − 1)ଶ(𝜉 + 2)

4
 (7) 

𝑁ଶ(𝜉) =
𝐿(𝜉 − 1)ଶ(𝜉 + 1)

8
 (8) 

𝑁ଷ(𝜉) = −
(𝜉 + 1)ଶ(𝜉 − 2)

4
 (9) 

𝑁ସ(𝜉) =
𝐿(𝜉 − 1)(𝜉 + 1)ଶ

8
 (10) 

 
and the nodal vectors associated with degrees of freedom 𝑑 of upper and lower beams are {𝑢ଵ} and {𝑢ଶ}, see Fig 
2(a). 

The distributed loading of upper and lower beams can be interpolated by  
 

𝑔ଵ(𝜉) = [𝑃]{𝑔ଵ} = [𝑃ଵ(𝜉) 𝑃ଶ(𝜉)] ቄ
𝑔ଵ

𝑔ଵ
ቅ (11) 

𝑔ଶ(𝜉) = [𝑃]{𝑔ଶ} = [𝑃ଵ(𝜉) 𝑃ଶ(𝜉)] ቄ
𝑔ଶ

𝑔ଶ
ቅ (12) 
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where [𝑃] denotes the row matrix containing 𝑃  functions. {𝑔ଵ}் = (𝑔ଵ 𝑔ଵ) and {𝑔ଶ}் = (𝑔ଶ 𝑔ଶ) are the 
nodal loading vectors of upper and lower nanobeams, see Fig 2(b). 

 

Figure 2. (a) Degrees of freedom of double nanobeam element; (b) Distributed loads. 

Using principle of minimum total potential to form the functional in case of nonlocal elasticity theory, the 
weighted-integral statement of eq. (3) and eq. (4)can be written as: 

 

න ൛𝐸ଵ𝐼ଵ𝑤ᇱᇱᇱᇱ + 𝐾௪(𝑤 − 𝑣) − 𝐺(𝑤ᇱᇱ − 𝑣ᇱᇱ) +




 
 

+𝜇ଵൣ−𝐾௪(𝑤ᇱᇱ − 𝑣ᇱᇱ) + 𝐺(𝑤ᇱᇱᇱᇱ − 𝑣ᇱᇱᇱᇱ) + 𝑔ଵ′′൧𝜒ൟ𝑑𝑥 = 0 (13) 

න ൛𝐸ଶ𝐼ଶ𝑤ᇱᇱᇱᇱ − 𝐾௪(𝑤 − 𝑣) + 𝐺(𝑤ᇱᇱ − 𝑣ᇱᇱ) +




 
 

+𝜇ଶൣ𝐾௪(𝑤ᇱᇱ − 𝑣ᇱᇱ) − 𝐺(𝑤ᇱᇱᇱᇱ − 𝑣ᇱᇱᇱᇱ) + 𝑔ଶ′′൧𝜆ൟ𝑑𝑥 = 0 = 𝑔ଶ (14) 

 
where χ and λ are upper and lower nanobeam weight functions respectively. In this paper, a Bubnov-Galerkin 
procedure is adopted. 

Performing integration by parts on eq. (13)-(14), the weak form can be written as: 
 

න 𝐸ଵ𝐼ଵ𝑤ᇱᇱ𝜒ᇱᇱ + 𝐾௪(𝑤 − 𝑣)𝜒 + 𝐺(𝑤ᇱ − 𝑣ᇱ)𝜒ᇱ − 𝑔ଵ𝜒




 
 

𝜇ଵൣ−𝐾௪(𝑤ᇱ − 𝑣ᇱ)𝜒′ + 𝐺(𝑤ᇱᇱ − 𝑣ᇱᇱ)𝜒′′ + 𝑔ଵ𝜒′′൧𝑑𝑥 = 0 (15) 

න 𝐸ଶ𝐼ଶ𝑤ᇱᇱ𝜆ᇱᇱ + 𝐾௪(𝑤 − 𝑣)𝜆 − 𝐺(𝑤ᇱ − 𝑣ᇱ)𝜆ᇱ − 𝑔ଶ𝜆




 
 

𝜇ଶൣ−𝐾௪(𝑤ᇱ − 𝑣ᇱ)𝜆′ + 𝐺(𝑤ᇱᇱ − 𝑣ᇱᇱ)𝜆′′ + 𝑔ଶ𝜆′′൧𝑑𝑥 = 0 (16) 

 
Performing all integrals in Eq.(15)-(16), the FEM algebraic system can be shown as follows 

 

[𝐾]{𝐷} = {𝐹} (17) 

 
where [𝐾] is the stiffness matrix and {𝐹} is the equivalent load vector, writted in the alternative forms as: 

 

[𝐾] = 
[𝐾ଵଵ] [𝐾ଵଶ]

[𝐾ଶଵ] [𝐾ଵଶ]
൨ , {𝐹} = ൜

{𝐹ଵ}

{𝐹ଶ}
ൠ , {𝐷} = ൜

{𝑢ଵ}

{𝑢ଶ}
ൠ (18) 
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where 

[𝐾ଵଵ] = ൫𝐸ଵ𝐼ଵ + 𝜇ଵ𝐺൯[𝐾] + ൫𝐺 + 𝜇ଵ𝐾௪൯ൣ𝐾ఊ൧ + 𝐾௪ൣ𝐾ఉ൧ 

[𝐾ଵଶ] = −𝜇ଵ𝐺[𝐾] − ൫𝐺 + 𝜇ଵ𝐾௪൯ൣ𝐾ఊ൧ − 𝐾௪ൣ𝐾ఉ൧ 

[𝐾ଶଶ] = −𝜇ଶ𝐺[𝐾] − ൫𝐺 + 𝜇ଶ𝐾௪൯ൣ𝐾ఊ൧ − 𝐾௪ൣ𝐾ఉ൧ 

[𝐾] = ൫𝐸ଶ𝐼ଶ + 𝜇ଶ𝐺൯[𝐾] + ൫𝐺 + 𝜇ଶ𝐾௪൯ൣ𝐾ఊ൧ + 𝐾௪ൣ𝐾ఉ൧ 

(19) 

 
Explicit forms for the matrices in eq. (19) can be obtained with the help of eq. (7)-(10) and (5a). resulting 

in 

[𝐾] = න ቈ
𝑑ଶ𝑁

𝑑𝜉ଶ


்ଵ

ିଵ

ቈ
𝑑ଶ𝑁

𝑑𝜉ଶ
 𝐽𝑑𝜉 =

1

𝐿ଷ ൦

12
6𝐿 

−12
6𝐿

  6𝐿 
 4𝐿ଶ

 −6𝐿
 2𝐿ଶ

 −12  
−6𝐿
12

−6𝐿

6𝐿
2𝐿ଶ

−6𝐿
4𝐿ଶ

൪ (20) 

ൣ𝐾ఉ൧ = න [𝑁]்
ଵ

ିଵ

[𝑁]𝐽𝑑𝜉 =
𝐿

420
൦

156
22𝐿 
54

−13𝐿

  22𝐿 
 4𝐿ଶ

 13𝐿
  −3𝐿ଶ

 54  
13𝐿
156 

 −22𝐿

−13𝐿
−3𝐿ଶ

−22𝐿
4𝐿ଶ

൪ (21) 

ൣ𝐾ఊ൧ = න 
𝑑𝑁

𝑑𝜉
൨

்ଵ

ିଵ


𝑑𝑁

𝑑𝜉
൨ 𝐽𝑑𝜉 =

1

30𝐿
൦

36
3𝐿 

−36
3𝐿

  3𝐿 
 4𝐿ଶ

 −3𝐿
  −𝐿ଶ 

−36  
−3𝐿
36 

 −3𝐿

3𝐿
 −𝐿ଶ

−3𝐿
4𝐿ଶ

൪ (22) 

 
In this paper was assumed a linear distribution for the loading, the functions, thus 𝑃  are 𝑃ଵ(𝜉) = (1 −

𝜉)/2 and 𝑃ଶ(𝜉) = (1 + 𝜉)/2 , so that the equivalent load vector can be written as follows 
 

{𝐹ଵ} = න [𝑁]்[𝑃]𝐽
ଵ

ିଵ

𝑑𝜉{𝑓ଵ} (23) 

{𝐹ଶ} = න [𝑁]்[𝑃]𝐽
ଵ

ିଵ

𝑑𝜉{𝑓ଶ} (24) 

 
For the case of constant distributed loads, the equivalent load vector is explicitly written as:  

 

{𝐹ଵ} = ቈ
𝑔ଵ𝐿

2
ቆ

𝐿ଶ

12
+ 𝜇ଵቇ 𝑔ଵ

𝑔ଵ𝐿

2
− ቆ

𝐿ଶ

12
+ 𝜇ଵቇ 𝑔ଵ (25) 

{𝐹ଶ} = ቈ
𝑔ଶ𝐿

2
ቆ

𝐿ଶ

12
+ 𝜇ଶቇ 𝑔ଶ

𝑔ଶ𝐿

2
− ቆ

𝐿ଶ

12
+ 𝜇ଶቇ 𝑔ଶ (26) 

3  Numerical results 

3.1 Simply support double-nanobeam system 

Consider a system of simply supported double nanobeams of cross-section with dimensions 𝑏 and ℎ, length 
𝐿, connected by an elastic layer of normalized stiffness (𝐾

തതത = 100) and normalized shear (𝐺
തതത=0.1). The nanobeams 

are identical and have a Young's modulus 𝐸ଵ = 𝐸ଶ, 𝐼ଵ = 𝐼ଶ. A uniform distributed load is applied to the upper 
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beam 𝑔ଵ. 

Table 1. Dimensionless maximum deflections 𝑤ഥ  and �̅� and maximum rotation of double nanobeams subjected to 
uniform distributed load 

𝝁𝟏തതത = 𝝁𝟐തതത 𝑹𝒆𝒔𝒑𝒐𝒏𝒔𝒆 𝟐 𝑭𝑬 𝟒 𝑭𝑬 𝟖 𝑭𝑬 𝑨𝒏𝒂𝒍𝒚𝒕𝒊𝒄𝒂𝒍 

1 

𝑤ഥ(𝑥10ିଶ) 7.1180 7.1510 7.1510 7.1510 
𝑑𝑤ഥ/𝑑𝑥(𝑥10ିଵ) 2.9728 3.0205 3.0306 3.0257 

�̅�(𝑥10ିଶ) 6.6840 6.6510 6.6510 6.6510 
𝑑�̅�/𝑑𝑥(𝑥10ିଵ) 2.4439 2.3961 2.3860 2.3843 

2 

𝑤ഥ(𝑥10ିଵ) 1.3355 1.3400 1.3401 1.3401 
𝑑𝑤ഥ/𝑑𝑥(𝑥10ିଵ) 5.5121 5.6011 5.6272 5.6196 

�̅�(𝑥10ିଵ) 1.2947 1.2902 1.2901 1.2901 
𝑑�̅�/𝑑𝑥(𝑥10ିଵ) 4.9046 4.8156 4.7895 4.7836 

3 

𝑤ഥ(𝑥10ିଵ) 1.9599 1.9650 1.9651 1.9651 
𝑑𝑤ഥ/𝑑𝑥(𝑥10ିଵ) 8.0292 8.1453 8.1855 8.1761 

�̅�(𝑥10ିଵ) 1.9203 1.9152 1.9151 1.9151 
𝑑�̅�/𝑑𝑥(𝑥10ିଵ) 7.3874 7.2714 7.2312 7.2203 

4 

𝑤ഥ(𝑥10ିଵ) 2.5846 2.5900 2.5901 2.5901 
𝑑𝑤ഥ/𝑑𝑥 1.0539 1.0674 1.0725 1.0714 

�̅�(𝑥10ିଵ) 2.5456 2.5402 2.5401 2.5401 
𝑑�̅�/𝑑𝑥(𝑥10ିଵ) 9.8778 9.7431 9.6913 9.6752 

5 

𝑤ഥ(𝑥10ିଵ) 3.2093 3.2150 3.2151 3.2151 
𝑑𝑤ഥ/𝑑𝑥 1.3045 1.3193 1.3255 1.3242 

�̅�(𝑥10ିଵ) 3.1709 3.1653 3.1651 3.1651 
𝑑�̅�/𝑑𝑥 1.2372 1.2223 1.2162 1.2141 

 

The maximum dimensionless deflections were computed for different values of the nonlocal parameter 
and nonlocal FEM. The parameters were normalized by: 𝐾

തതത = 𝐾௪𝐿ସ/𝐸ଵ𝐼ଵ, 𝐺
തതത = 𝐺𝐿ଶ/𝐸ଵ𝐼ଵ, 𝜇ଵതതത = 𝜇ଵ/𝐿ଶ, 𝜇ଶതതത =

𝜇ଶ/𝐿ଶ, 𝑤ഥ = 𝑤𝐸ଵ𝐼ଵ/𝑔ଵ𝐿ସ and �̅� = 𝑣𝐸ଵ𝐼ଵ/𝑔ଵ𝐿ସThe analytical response could be obtained by the nonlocal 
differential equation substituting 𝑤 = ∑ 𝐴 𝑠𝑖𝑛(𝑚𝜋𝑥/𝐿 )ଵ

ୀଵ  and 𝑣 = ∑ 𝐵 𝑠𝑖𝑛(𝑚𝜋𝑥/𝐿 )ଵ
ୀଵ  in the equilibrium 

equation of the double nanobeam system and employing convenient mathematical procedures. For the convergence 
analysis, the nanobeam was discretized into 2, 4 and 8 finite elements (FE). Thus, the FEM responses to 
displacements using different discretizations and its analytical solution were compared in Table 1. As can be seen, 
the formulation is very attractive, since it presents satisfactory response and an excellent agreement between the 
FEM results and the analytical solutions. 
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Figure 3. (a-b) Displacement of upper and lower nanobeam (𝜇ଵതതത = 𝜇ଵതതത = 1); (c-d) Displacement of upper and 
lower nanobeam (𝜇ଵതതത = 𝜇ଵതതത = 5). 

4  Conclusions 

In this present work, the flexural response of a double nanobeam system elastically connected by Pasternak 
layer is obtained using the Finite Element Method. Using the Euler-Bernoulli beam theory, a finite element with 
eight degrees of freedom is derived and the both stiffness matrix and load vector are explicitly obtained. 

The formulation is very attractive, showing a satisfatory response when comparing wiht exact solutions, 
since, it can to solve any problems considering the more various boundary conditions that the analytical solutions 
cannot solve. 
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