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Abstract. We consider the equilibrium of an annular disk that is fixed on its inner surface and subjected to uniform
pressure on its outer surface. The disk is cylindrically orthotropic and radially reinforced, which may be found in
certain types of woods and carbon fibers with radial microstructure. In the context of the classical linear elasticity,
the solution of this problem predicts material overlapping. A way to prevent this unphysical behavior consists
of using a constrained minimization theory together with classical nonlinear elasticity. Another way consists
of adopting a material model that is adequate for large deformations. In this work, we compare both of these
approaches and obtain solutions that are in very good agreement with each other. In addition, these solutions yield
discontinuous deformation gradients. This creates numerical difficulties, which are overcome by including the
position of a discontinuity as a variable of the numerical procedure. This research is of interest in the study of
stress-induced phase transformations.

Keywords: Nonlinear elasticity, Orthotropy, Constrained Minimization, Local injectivity constraint, Finite ele-
ment method

1 Introduction

Certain problems in classical linear elasticity have solutions that predict material overlapping for a small
external load, which is not physically acceptable. One such problem concerns the equilibrium of an annular disk
that is fixed on its inner surface of radius Ri and is subjected to a uniform pressure on its outer surface of radius
Re. The disk is cylindrically orthotropic and radially reinforced, in the sense that the disk is stiffer in the radial
direction than in the tangential direction. Material properties of this type are found in certain types of woods [1]
and carbon fibers with radial microstructure [2].

To avoid material overlapping, Fosdick and Royer-Carfagni [3] have proposed to minimize the energy func-
tional E of classical linear elasticity subject to the local injectivity constraint detF ≥ ε > 0, where F is the
deformation gradient and ε is a small positive parameter. Even though material overlapping is eliminated, the the-
ory still predicts that large deformations, which violate the hypothesis of infinitesimal strains of the linear theory,
still occur. In previous works [4, 5], we have extended this constrained theory to the nonlinear elasticity theory by
considering that E is the energy functional of a hyperelastic material. As we will see in Section 4, a distinguishing
feature this nonlinear constrained minimization theory is that, for the disk problem, it yields a bounded Lagrange
multiplier field, whereas its linear counterpart yields an unbounded one when ε → 0.

Another way to prevent material overlapping consists of adopting a material model that is adequate for large
deformations. In this work, we compare these two approaches. For this, we investigate the disk problem using
two different models. The first model concerns the orthotropic St Venant-Kirchhoff model in the context of the
above constrained minimization theory. The second model concerns a compressible Mooney-Rivlin model [6]
that is extended to the orthotropic case as proposed by Bonet and Burton [7]. For this second model, we do not
impose the local injectivity constraint explicitly since the model is conceived to satisfy this constraint implicitly.
In addition, the solutions obtained with both models have a discontinuity in the deformation gradient when the
pressure is large enough. This creates numerical difficulties, which are overcome by including the position of this
discontinuity as a variable of the numerical procedure. Therefore, the numerical procedure used in this work is of
interest in the study of stress-induced phase transformations, where the deformation field is typically not smooth.

In Section 2, we formulate the disk problem for both material models. In Section 3, we present the numerical
procedure used to obtain the numerical results presented in Section 4. In Section 5, we present some concluding

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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remarks.

2 The disk problem

Let B ⊂ R3 denote the undistorted reference configuration of a homogeneous annular disk in equilibrium.
The disk has an inner radius Ri > 0, outer radius Re > Ri and unitary thickness. Points x ∈ B are mapped
into points y ≜ f(x) = x + u(x), where f and u are the deformation and the displacement fields, respectively.
The boundary ∂B of B is composed of two non-intersecting parts, ∂1B and ∂2B, which represent the inner and
outer surfaces of the disk, respectively. The disk is fixed on ∂1B so that f = x on ∂1B. On ∂2B, there is a
pressure load t̄, which is constant in the deformed configuration and given by t̄ = −p cof FN, where p > 0,
cof F ≜ (detF)F−T , N is the outward unit normal to ∂2B, and F ≜ ∇f = I+∇u, with ∇ denoting the gradient
operator with respect to x and I denoting the identity tensor.

Let {eR, eΘ, eZ} denote the usual orthonormal cylindrical basis at x associated with the cylindrical coordi-
nates (R,Θ, Z), such that x = R eR(Θ) + Z eZ . Similarly, let {er, eθ, ez} and (r, θ, z) be the corresponding
orthonormal cylindrical basis and coordinates, respectively, at y, such that y = r er(θ) + z ez . Unless stated
otherwise, we shall omit the dependence of eR and er on Θ and θ, respectively.

The disk is made of a cylindrically orthotropic material. We consider two hyperelastic models for the disk.
The first model concerns an orthotropic St Venant-Kirchhoff material, which is a natural extension from the classi-
cal linear elastic material. The second model is a compressible Mooney-Rivlin material model [6] extended to the
orthotropic case, as proposed by Bonet and Burton [7]. The strain energy functions of the models are given by

W̄vk(I1, I2, I4, I5, I6, I7) = W̄ iso
vk (I1, I2) + W̄aniso(I1, I4, I5, I6, I7) ,

W̄ iso
vk (I1, I2) = µ (I1 − 3) +

λ+ 2µ

8
(I1 − 3)2 − µ

2
(I2 − 3) ,

(1)

W̄mr(I1, I2, I4, I5, I6, I7) = W̄ iso
mr (I1, I2, I3) + W̄aniso(I1, I4, I5, I6, I7) ,

W̄ iso
mr (I1, I2, I3) = a (I1 − 3) + b (I2 − 3) + c (I3 − 1)− d

2
log I3 ,

(2)

W̄aniso(I1, I4, I5, I6, I7) =
1

4

[
α1 (I4 − 1)2 + α2 (−2 I4 + I5 + 1) + α3 (I1 − 3) (I4 − 1) + α4 (I6 − 1)2

+ α5 (−2 I6 + I7 + 1) + α6 (I1 − 3) (I6 − 1) + α7 (I4 − 1) (I6 − 1)
]
,

(3)

where the subscripts “vk” and “mr” denote the St Venant-Kirchhoff and Mooney-Rivlin materials, respectively, µ,
λ, a, b, c, d, αi, i = 1, 2, 3, ..., 7, are material parameters, and Ii, i = 1, 2, 3, ..., 7, are given in terms of the right
Cauchy-Green strain tensor C = FT F by

I1 ≜ trC , I2 ≜
1

2
[I21 − tr (C2)] , I3 ≜ detC ,

I4 ≜ m1 ·Cm1 , I5 ≜ m1 ·C2 m1 , I6 ≜ m2 ·Cm2 , I7 ≜ m2 ·C2 m2 .
(4)

The vectors m1 and m2 are the material symmetry directions, which, in this work, are given by m1 = eR and
m2 = eΘ. Additionally, in order for the response of the above hyperelastic models to reduce to that of a linearly
elastic material under infinitesimal deformations, their material parameters are related to the classical elasticity
constants by the relations

λ = c33 − 2 (c44 + c55 − c66) , µ = c44 + c55 − c66 ,

a = c− c33
4

+ c44 + c55 − c66 , b = −c+
c33
4

− 1

2
(c44 + c55 − c66) , d =

c33
2

,

α1 =
c11
2

− c13 +
c33
2

− 2 c55 , α2 = 2 (−c44 + c66) ,

α3 = c13 − c33 + 2 (c44 + c55 − c66) , α4 =
c22
2

− c23 +
c33
2

− 2 c44 ,

α5 = 2 (−c55 + c66) , α6 = c23 − c33 + 2 (c44 + c55 − c66) ,

α7 = c12 − c13 − c23 + c33 − 2 (c44 + c55 − c66) .

(5)

We want to find a deformation field f , such that points x = (R,Θ, Z) ∈ [Ri, Re] × [0, 2π] × [0, 1] move
along radial lines according to

f(R,Θ, Z) = r(R) er(Θ) + Z ez . (6)
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The corresponding displacement field has the form

u(R,Θ, Z) = ur(R) eR , ur(R) = r(R)−R . (7)

Since F ≜ ∇f , we have that

F = ν(R) er ⊗ eR + τ(R) eθ ⊗ eΘ + ez ⊗ eZ , ν(R) ≜ r′(R) , τ(R) ≜ r(R)/R , (8)

where the explicit dependence on x = (R,Θ, Z) is omitted and (·)′ denotes the derivative with respect to R.
In this work, we want to find the radial displacement field ur : (Ri, Re) → R that minimizes the energy

functional [6]

Ě(ur) ≜ E(f) ≜
∫
B
W (F) dx+

p

3

∫
∂B

(cof FN) · f dx . (9)

We refer to this problem as the disk minimization problem (disk MP). For the St Venant-Kirchhoff material, it
follows from (1), (4), (5), (8), and (7.b), that Ě in (9) can be written as

Ě vk(ur) ≜π

∫ Re

Ri

(c11
4

Ru′
r
4
+ c11 Ru′

r
3
+ c11 Ru′

r
2
+ c12 ur u

′
r
2
+ 2 c12 ur u

′
r

+
c12
2R

u2
r u

′
r
2
+

c12
R

u2
r u

′
r +

c22
R

u2
r +

c22
R2

u3
r +

c22
4R3

u4
r

)
dR

+ π p
[
(Re + ur(Re))

2 −R2
i

]
.

(10)

Similarly, for the Mooney-Rivlin material, we use (2) in place of (1) to write Ě as

Ě mr(ur) ≜ Ě vk(ur) + π c33

∫ Re

Ri

{
− Ru′

r
4

4
−Ru′

r
3 − Ru′

r
2

2
+Ru′

r

− R

2
log

[
(R2 + 2Rur + u2

r) (u
′
r
2
+ 2u′

r + 1)

R2

]

+ ur −
u2
r

2R
− u3

r

R2
− u4

r

4R3

}
dR .

(11)

Observe from (10) and (11) that Ě vk depends only on the elastic constants c11, c22, and c12, whereas Ě mr depends
also on c33. In addition, for the St Venant-Kirchhoff material, we explicitly impose the local injectivity constraint
detF ≥ ε > 0, where ε is a small positive parameter. Without imposing this constraint, it is well known that this
material may yield a deformation that predicts self-intersection. For the Mooney-Rivlin material, this constraint is
not imposed explicitly because the model is conceived to satisfy this constraint implicitly.

3 Numerical procedure

We use a Finite Element formulation to find approximate minimizers of the disk MP. For this, let Vh be a
finite dimensional space spanned by a set of basis functions {wi}, where h stands for the characteristic length of
the finite element. Then, an approximate minimizer uh ∈ Vh can be written as

uh = uh eR , uh =

m∑
i=1

si wi , (12)

where si ∈ R, i = 1, 2, 3, ...,m, is a degree of freedom and m is the number of degrees of freedom associated
with the discretization. In this work, we use linear finite elements and a Gauss-Legendre quadrature rule with two
points.

For both St Venant-Kirchhoff and Mooney-Rivlin materials, it follows from (1), (2), and (8) that the radial
normal stress Prr ≜ er ·PeR, where P = ∂W/∂F is the first Piola-Kirchhoff stress tensor, is given by

Prr(R) = P̂ vk
rr (ν, τ) =

[
c11 (ν

2 − 1) + c12 (τ
2 − 1)

]
ν/2 (13)

for the St Venant-Kirchhoff material and by

Prr(R) = P̂ mr
rr (ν, τ) = P̂ vk

rr (ν, τ)− (ν4 − 2 ν2 + 1) c33 / (2 ν) (14)
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for the Mooney-Rivlin material. It is possible to verify that, for a given τ , both P̂ vk
rr and P̂ mr

rr are non-monotonic
with respect to ν depending on the elastic constants. These extrema occur for ν = νe1 and ν = νe2, where

νe1 = −νe2 =

√
3

3

√
(−τ2 + τ̄2)

c12
c11

, τ̄ ≜

√
c11 + c12

c12
(15)

for the St Venant-Kirchhoff material and

νe1 =

√
−b̄+

√
b̄2 − 4 ā c̄

2 ā
, νe2 =

√
−b̄−

√
b̄2 − 4 ā c̄

2 ā
,

ā ≜ 3 (c11 − c33) , b̄ ≜ (τ2 − 1) c12 − c11 + 2 c33 , c̄ ≜ c33

(16)

for the Mooney-Rivlin material.
In previous works [4, 8], we have verified that this non-monotonicity yields a discontinuity in the deformation

gradient if the pressure is large enough. This discontinuity creates numerical difficulties, which can be overcome
by using a numerical procedure that includes the position of the discontinuity R = RS as an additional variable of
the problem. Although these previous works concern only the St Venant-Kirchhoff material, the same behavior is
expected for the Mooney-Rivlin material considered in this work; thus, here, we use a similar procedure.

This procedure requires the introduction of a penalizing functional. For the Mooney-Rivlin material, we
define the functional

P(ur, RS) ≜ δe

[∫
Bi

max (0, ν − νe2)
2
dx+

∫
Be

max (0, νe1 − ν)
2
dx

]
≥ 0 , (17)

where both νe1 and νe2 are given by (16), δe > 0 is a penalty parameter, Bi ≜ {x ∈ B |Ri < R < RS}, and
Be ≜ {x ∈ B |RS < R < Re}. We see from the above equation that P is null if and only if ν ≥ νe1 in Be and
ν ≤ νe2 in Bi. In addition, RS is not limited to be in the interval [Ri, Re]; for instance, RS < Ri means that
Bi = ∅, Be = B.

For the St Venant-Kirchhoff material, we also need to consider the local injectivity constraint, which is
imposed by using an Augmented Lagrangian formulation. Then, we define the functional

L(ur, RS) ≜
∫
Bi

(
−λ c+

δ

2
c2
)
dx+ δe

∫
Be

max (0, νe1 − ν)
2
dx , (18)

where δ > 0 is a penalty parameter, νe1 is given by (15), and λ = λ(R) is the Lagrange multiplier field associated
with the constraint c ≜ detF− ε = 0 in Bi.

The discrete version of the disk MP is given by the bi-level minimization problem

min
RS∈R

min
s∈Rm

F(s, RS) , F(s, RS) =

{
E vk
h (s) + Lh(s, RS) (St Venant-Kirchhoff material)

E mr
h (s) + Ph(s, RS) (Mooney-Rivlin material)

, (19)

where we have used (12) to introduce the vector s ≜ (s1, s2, ..., sm) and the functions E vk
h (s) ≜ Ě vk(uh),

E mr
h (s) ≜ Ě mr(uh), Ph(s, RS) ≜ P(uh, RS), and Lh(s, RS) ≜ L(uh, RS). Observe from (19) that the in-

ner level is a minimization problem in the vector variable s parameterized by RS and that the outer level is a
minimization problem in the scalar variable RS , which we solve by using the golden-section search.

We set the initial search interval of the golden-section search to be [0.9Ri, 0.02Re]. At each iteration of this
method, we solve the inner problem for a given RS using a standard numerical procedure, which we comment
more below. Then, we evaluate the corresponding F(s, RS) and proceed to the next iteration, where the search
interval is reduced, as usual, in a golden-section search. We repeat these iterations until the search interval is
smaller than a certain tolerance, which is equal to 10−6 in this work.

For the Mooney-Rivlin materials, we solve the inner problem by starting from an initial candidate s = s0 and
by using a standard Newton-Raphson method with a unidirectional search. For the St Venant-Kirchhoff material,
we introduce a finite element approximation of λ given by

λh =

mλ∑
i=1

li wi , (20)

where li ∈ R, i = 1, 2, 3, ...,mλ, is a degree of freedom, mλ is the number of degrees of freedom associated
with the approximation of λ, and wi is a shape function of the finite element approximation. In this work, λh is
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constant by parts, so that mλ coincides with the number of mesh elements used in the discretization. Starting from
l1 = l2 = ... = lmλ

= 0 and s = s0, we solve the inner problem using a standard Newton-Raphson method
with a unidirectional search. Then, we update li, i = 1, 2, 3, ...,mλ, as explained below and solve again the inner
problem starting from the solution of the previous problem. We repeat this process until the L2-norm of the update
of λh is lower than 10−3. We update li, i = 1, 2, 3, ...,mλ, using the following recursive formula.

l
(k+1)
i = l

(k)
i − δ c

(k)
i , (21)

where the superscript denotes an iteration and c
(k)
i is equal to c evaluated at the center of the i-th mesh element in

the k-th iteration. For more details on the golden-section search, the Newton-Raphson method, the unidirectional
search, and the augmented Lagrangian method, see, for instance, Luenberger and Ye [9].

4 Numerical results

We now use the numerical procedure presented in the previous section to obtain approximate solutions of the
disk MP. We use a non-uniform mesh composed of 1536 elements distributed in three intervals: 960 elements in
Ri < R < 0.1Re, 320 elements in 0.1Re < R < 0.5Re, and 256 elements in 0.5Re < R < Re. We consider
the engineering constants E1 = 15, E2 = E3 = 1, v12 = v13 = 0.25, v23 = 0.5, where E and v denote the
Young’s modulus and the Poisson ratio, respectively, and the subscripts 1, 2, and 3 denote the radial, tangential,
and axial directions, respectively. These constants correspond to the elastic constants [10]

c11 = 900/59 ≈ 15.25 , c12 = 30/59 ≈ 0.51 , c22 = 239/177 ≈ 1.35 . (22)

In addition, we use Ri = 0.001, Re = 1, p = 0.1, the penalty parameters δe = 103 and δ = 104, and the initial
candidate s0 = 0, which corresponds to the undistorted configuration of the disk.

We first investigate the Lagrange multiplier field λ associated with the local injectivity constraint detF ≥
ε > 0, which is imposed for the St Venant-Kirchhoff model, when ε → 0. In Figure 1, we plot λ versus the radius
R for ε = 10−1, 10−2, 10−3, 10−5, 10−7. We see from this figure that the curves tend to a limit curve as ε → 0;
in fact, the curves corresponding to ε = 10−5 and ε = 10−7 are indistinguishable. This behavior is different from
the behavior of the linear counterpart of λ, which becomes unbounded as ε → 0 [11], and is in good agreement
with the analytical results of Aguiar and Rocha [5].

In Figure 2, we compare the results obtained with both the St Venant-Kirchhoff and Mooney-Rivlin models.
We show the radial displacement ur (top left), the radial stretch ν (top right), the determinant of the deformation
gradient detF = ν τ (bottom left), and the radial stress (bottom right) versus the radius R in a neighborhood of the
inner surface of the disk. Regarding the radial stress, we show Prr, given by (14), for the Mooney-Rivlin model and
P a
rr = Prr − λ τ for the St Venant-Kirchhoff model, where P a

rr is the total radial stress, which includes the effect
of both the constitutive part Prr, given by (13), and the Lagrange multiplier field λ associated with the constraint
detF ≥ ε. The solid lines correspond to results obtained with the Mooney-Rivlin (MR) material for different
values of c33. The dashed lines correspond to results obtained with the St Venant-Kirchhoff (StVK) material
for different values of ε. We see from Figure 2 that the results obtained with both materials have similarities.
For instance, as we move away from the inner radius, detF remains either constant or approximately constant,
increases sharply, and then increases moderately. In addition, as c33 and ε decrease, the results obtained with
both materials become very similar. In particular, the case MR c33 = c22/100 is almost indistinguishable from
the case StVK ε = 0.001. These results are in very good agreement with the results reported by Aguiar and
Rocha [5], which have formulated the disk problem as a boundary value problem and solved it with a phase-plane
technique. This boundary value problem is formulated using the Euler-Lagrange equations of the disk MP and
additional necessary conditions that its minimizer must satisfy. In this work, our numerical procedure converges
to the minimizer of the disk MP, satisfying these Euler-Lagrange equations and necessary conditions.

5 Conclusions

We have considered the equilibrium of an annular disk that is fixed on its inner surface and is subjected to a
uniform pressure on its outer surface. The disk is cylindrically orthotropic and radially reinforced. In the context
of the classical linear elasticity, the solution of this problem predicts material overlapping. A way to prevent this
unphysical behavior consists of using a constrained minimization theory, which was originally proposed in the
context of the classical linear elasticity theory [3] and, recently, extended to the nonlinear elasticity theory [4, 5].
A distinguishing feature of this nonlinear counterpart of the constrained minimization theory is that it yields a
bounded Lagrange multiplier field, whereas its linear counterpart yields an unbounded one when ε → 0 for the
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ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−5 ε = 10−7

Figure 1. Lagrange multiplier field λ versus R for different values of ε.

MR c33 = c22 MR c33 = c22/5 MR c33 = c22/20 MR c33 = c22/100

StVK ε = 0.1 StVK ε = 0.01 StVK ε = 0.001

Figure 2. Radial displacement ur (top left), radial stretch ν (top right), determinant of the deformation gradient
detF (bottom left), and radial stress (bottom right) versus the radius R for different values of c33 and ε.
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disk problem. We have also compared the solution obtained by this nonlinear constrained minimization theory
with the solution obtained by the standard nonlinear elasticity theory using a model that is conceived to prevent
material overlapping implicitly. The solutions obtained from both theories are in very good agreement with each
other.
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