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Abstract. Non-prismatic structural elements constitute a special class of slender structures. These types of 

structures capture the interest of engineers and architects due to their ability to optimize geometry to meet specific 

needs, such as weight reduction, material consumption, environmental impact, and costs. Despite the advantages 

that engineers can gain from using non-prismatic structural elements, modeling these structures poses non-trivial 

challenges, resulting in inaccuracies that may compromise the benefits offered by such structures. Taking this into 

consideration, this work presents an innovative approach to obtain the displacement solution for non-prismatic 

beams, obtaining the elastic stiffness matrix through the principle of virtual work, using the kinematics of 

Timoshenko's theory. This proposed formulation is independent of bar discretization to achieve an analytical result. 

This is due to the absence of considering any additional approximations beyond those already contained in the 

analytical idealization of bar behavior, resulting in a nearly natural discretization of the structure. 
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1  Introduction 

Non-prismatic structural elements constitute a special class of slender structures that cause great interest 

among engineers and architects. This is due to their geometric optimization capability, which can meet specific 

needs such as reducing weight, material consumption, environmental impact, and costs. These types of structures 

are used in various engineering applications, such as aircraft wings, helicopter blades and turbines, and bridge 

beams. Despite the advantages, the modelling of these elements presents complex challenges, resulting in 

inaccuracies that can compromise their benefits. 

Therefore, many studies employ a simplified modelling approach, disregarding the variation of the axis, as 

seen in Gesteira [1]. However, such simplifications result in inaccuracies both in the calculation of displacements 

and internal forces. Recently, however, some studies, such as those by Giuseppe Balduzzi et al. [2], and Vo et al. 

[3] , have started to consider complete modeling, taking into account both the variation in cross-sectional geometry 

and the axis. 

Furthermore, most studies use numerical methods that require many discretizations to solve problems 

involving non-prismatic elements and variable cross-sections, which lead to high computational costs. Among 

these methods, isogeometric analysis proposed by Vo et al. [3] and the power series method presented by 

Masoumeh Soltani and Asgarian [4] stand out. When opting for an analytical solution, it generally becomes more 

complex due to the adoption of a reduced-dimension methodology, such as in the case of Mercuri et al. [5] using 

the Hellinger-Reissner functional. 

In this context, this work stands out from others by developing the elastic stiffness matrix through the 

principle of virtual work using the kinematics of Timoshenko's theory, improving upon the approach presented by 

Vo et al. [3]. The proposed formulation is independent of the discretization of the beam to achieve the analytical 
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result. This is due to the absence of any additional approximations beyond those already contained in the analytical 

idealization of the beam’s behavior, resulting in a nearly natural discretization of the structure.  

2  Analytical Idealization of Non-Prismatic Beam 

To investigate the influence of considering the axis in the analysis of non-prismatic structures, this work 

modifies the kinematics of Timoshenko's theory by incorporating the effects of sections oblique to the beam axis 

in the formulation deduction. Thus, this section summarizes the main mathematical concepts involved in the 

idealization of non-prismatic beam behavior. This idealization is based on simplifications of the continuum 

kinematics through stress and strain expressions, compatibility conditions between displacements and strains, 

equilibrium conditions, and material constitutive laws. 

Figure 1 (a) illustrates the undeformed configuration for the non-prismatic element. In this representation, 

the undeformed beam axis is depicted as a curve. All sections of the beam are initially considered vertical, and the 

height of the sections varies along the axis of the structure. Additionally, the director vector corresponds to the 

unit vector aligned with the section. 

All relevant kinematic quantities for describing the non-prismatic beam are schematized in Figure 1 (b). 

It is important to emphasize that these quantities in the undeformed and updated configurations are denoted by 

uppercase and lowercase letters, respectively. A generic point on the beam can be identified through the parameters  

S  and Q . Where, S  represents the arc length parameter andQ  corresponds to the position parameter along the 

sectional height, so −0.5ℎ ≤ 𝑄 ≤ 0.5ℎ. In Figure 1 (b), the tangent vectors to the axis at points 0G  and 0g  are 

written as: 

Furthermore, the derivative is with respect to the arc length of the undeformed axis ,S and, A1  corresponds 

to the unit vector. The director vector A2 can be directly described through the undeformed configuration, while 

α2 corresponding to the deformed configuration, is calculated through the relationship between the rotational 

operator and the director vector A2. However, it is worth noting that in this study, the magnitudes of 

displacement and rotation are considered very small, thus, u0(𝑆, 𝑡) ≪ 1,du0(S,t)/dS≪ 1,|𝜃| ≪ 1. As a result, 

Λ(𝜃)is simplified, so the expression for the director vector 2a  and its derivative are written as: 

On the other hand, the expressions for the position vectors 0G  and 0g  are formulated as follows, 

according to Equations (5) e (6): 
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Figure 1 –a) A possible undeformed configuration of the beam with an oblique section and the beam axis b) 

Kinematic quantities in the undeformed and updated configurations [3]. 

Thus, the displacement vector is expressed through pointsG  and g , as indicated by Equation(7): 

It is worth noting that the displacement vector at a generic point is determined through the vectors 0 ,u S t  

and 𝜃, which are the kinematic unknowns in this study. The nonlinear terms of the kinematic unknowns are 

obtained by substituting the tangent vectors and director vectors from Equations (1) and (2) into the non-zero 

components of the Green-Lagrange strain tensor. However, since the magnitudes of the kinematic unknowns are 

considered small, higher-order terms can be neglected. Therefore, the equations can be linearized as follows: 

It is important to highlight that the expression for shear distortion in an element with a varying axis, 𝛾s, 

depends on both the displacement vector u0 which corresponds to axial and transverse displacements, and the 

rotation. This contrasts with the shear distortion in prismatic beams and those with variable cross-sections, where 

the dependence was only on transverse displacement and rotation. 

The differential relationship between the strain components of an infinitesimal beam element and the 

corresponding internal resultants, known as axial force N11, shear force Q12 and bending moment M11, based on 

the director vectors Aα⨂ Aβ, as illustrated in Figure 1 (b), is characterized by the internal relative displacements. 

This relationship is calculated by integrating the stress components over the cross-section of the element: 
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where the coefficient Z is given by: 

In Eqs (10)-(13) A, I and κs correspond to the cross-sectional area, the moment of inertia, and the shape factor, 

respectively. This factor defines the effective shear area of the cross-section and has a value of 5/6 for rectangular 

sections, which is the type of section used in this study. 

3  Formulation of the discrete problem by finite elements in non-prismatic 

beams 

In this context, with the aim of representing non-prismatic structures in a way that requires minimal and 

nearly immediate discretization, it is proposed to use the principle of virtual work combined with the new 

deduction of the kinematics of Timoshenko's theory. This new approach considers sections oblique to the beam 

axis in deriving the expression, as presented in the previous section. Thus, it is possible to represent non-prismatic 

elements without the need for additional approximations beyond those already included in the analytical 

idealization of beam behavior. 

In this section, with the aim of obtaining the elastic stiffness matrix for elements with a tapered beam, 

considering and not considering that the beam axis is aligned with the cartesian system, the height ( )H x  is assumed 

to vary linearly along the element. Therefore, ( ),H x  can be written as a function of the known values at the 

beginning, 0H , and end, LH , of each element of length L and thicknessb . Since the variation is linear, it is possible 

to express LH  as a function of 0H , such that 0LH H : 

  

(a) (b) 

Figure 2 –a) Tapered beam without variation in the beam axis b) Tapered beam considering that the beam axis is 

aligned with the cartesian system. 

From Equation (14), one can derive the functions for the cross-sectional area, 𝐴(𝑥), bending inertia, 𝐼(𝑥), 
and the dimensionless parameter Ω(𝑥), which relate the bending inertia , 𝐸𝐼(𝑥), to the shear inertia, 𝐺𝜅𝑠𝐴(𝑥). 
This parameter is used to account for the beam length L : 

𝑍 = (𝐴1𝐴2)(2𝐺 − 𝐸) (13) 

𝐻(𝑥) = 𝐻0 + (𝐻1 −𝐻0)
𝑥

𝐿
= 𝐻0 (1 + (𝛼 − 1)

𝑥

𝐿
) (14) 
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 The stiffness matrix of a variable cross-sectional element using Timoshenko's formulation is determined 

according to the force method, where the fundamental parameters are the forces or moments, and the solution to 

the continuous problem is obtained through the flexibility coefficients. These coefficients are defined by the 

principle of virtual work. From these coefficients, it becomes possible to calculate the local flexibility matrix of 

the element. Considering that, in determining these coefficients, we use the expressions for internal forces 

calculated through the new deduction of Timoshenko's kinematics, and then the stiffness matrix coefficients can 

be obtained by inverting the resulting flexibility matrix. 

Subsequently, the elastic stiffness matrix of a tapered beam structure was derived using the principle of 

virtual work, considering the variation of the beam axis. For this, Equation (14) were used again to obtain the 

expressions for height, area, inertia, and the dimensionless parameter, respectively. In this case, unlike the previous 

one, the expression representing the beam axis is employed: 

 

Indeed, the expressions used to describe the height and axis of the structure allow for precise analysis. This 

is because they are used both in the expression of height, for calculating the area, inertia, and dimensionless 

parameters, and in the expression of the axis, for determining the director vectors, which are essential for deriving 

the kinematic formulation of Timoshenko's theory. Therefore, the resulting elastic stiffness matrices for both cases 

of tapered beams, that is, considering or not considering the axis, are available as open-source code in the files 

TaperedBeamTimoshenko [6] and TaperedBeamObliqueAxisTimoshenko [7]. 

4  Numerical application  

This section analyses the displacements and internal efforts of bars with a tapered beam, considering two 

cases: one with a constant axis and the other with a variable axis. It is worth noting that all bars have a value of 

0.1 for the dimensionless parameter α, in order to represent one of the most critical situations of the structure 

composed of tapered beams, as it corresponds to a large difference between the final height HL and the initial 

height H0 of the element in Figure 2. It is important to emphasize that, given the absence of an available analytical 

solution in this specific context, the error was quantified through highly refined modelling. This modelling was 

developed by applying plane stress elements, using the bilinear quadrilateral element, in the Robot software [8]. 

Table 1. Properties of the Structure 

Parameter.  E (kN/m2) G (kN/m2) v H0 (m) b (m) L (m) 𝜒 

Beam  20.107 76.9230.106 0.3 0.5 0.5 4 5/6 

 

The results of the displacements for the models developed in this study are presented in Figure 3 and 

Table 2. Comparisons between the two-dimensional model and the numerical models developed in this study, 

shown in Table 2, demonstrate that the proposed formulation yields satisfactory results regarding displacements. 

The internal forces are shown in Table 3. In structures where the axis follows a non-constant function as it passes 

through the centroids of the cross-sections, the geometry of the beam is characterized by defining the equation of 

this axis, as the cross-section of the structure, is defined at any point along this axis. Consequently, the internal 

forces are also described according to the equation of the structure's axis: the normal force represents the internal 

axial force in the direction of the x axis expression, the shear force corresponds to the internal transverse forces in 

the direction of the y axis expression, and the bending moment refers to the bending around the z axis expression. 

Thus, it is possible to consider that the internal forces are provided in the generalized local directions and 

coordinates in the local coordinate system of the beam, that is, coordinates defined through the variable axis. 

𝛺(𝑥) =
𝐸𝐼(𝑥)

𝐺𝜅𝑠𝐴(𝑥)𝐿
2
 (15) 

𝑐(𝑥) =
(𝐻0 − 𝛼𝐻0)𝑥

2𝐿
 (16) 
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Considering this, it is observed that the values obtained for displacements and forces differ between the 

case where the axis varies and the case where it remains constant. This difference occurs for both internal forces 

and displacements because, when the axis varies, there is a projection of shear and normal forces relative to the 

variable axis, i.e., the local axis. This causes a change in values compared to those obtained with a constant axis. 

Table 2. Results of the displacements 

 Constant axis Varible axis   

 Proposed 

 Model 
FEM 

Relative 

Error (%) 

Proposed 

Model 
FEM 

Relative 

Error (%) 

u(m) - - - 0.0477268 0.0474710 0.538855 

v(m) -0. 8471489 -0.8453530 0.21244 -0.84848806 -0.850669 0.256560 

θ -0.768 - - -0.7692140404 - - 

Table 3. Results of internal force 

 Constant axis  Varible axis   

Beam points 1 2 1 2 

Axial force 

(kN) 

0 0 0.561612214 -0.561612214 

Shear force 

(kN) 
10 -10 9.98421714 -9.98421714 

Bending 

moment 

(kNm) 

40 0 

40 0 

 

These second analysis studies the displacement of structure for varying values of the dimensionless 

parameter  α, which corresponds to the ratio between the final base LH  and the initial base 0H of the element, as 

shown in Figure 2 .To achieve a more precise understanding of the influence of α , its value is varied from 0.1 to 

1 . This range allows for a comprehensive evaluation of the impact of α on the calculation of nodal displacement. 

The results presented in Figure 3 highlight the influence of α on the structure, utilizing a solution based on the 

principle of virtual work and the kinematics of Timoshenko's theory. Based on the results presented in the graph, 

it is possible to see that, especially in the case of α =0.1, where the difference between the final and initial base is 

more pronounced, there is a significant discrepancy in the horizontal displacement when considering the variation 

along the axis. This highlights the importance of incorporating the variation along the axis in the analysis, 

providing greater accuracy in the results, especially when dealing with non-prismatic structures. 
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Figure 3 – Results of the element with a tapered beam varying from α -0.1 to 1. 

5  Conclusion 

In this work, a formulation for the elastic stiffness matrix of non-prismatic bars was developed using the 

principle of virtual work and the kinematics of Timoshenko's beam theory. The objective was to obtain an exact 

formulation for these bars, so that they do not depend on the discretization of the structure to achieve an accurate 

result. As a result, it was possible to determine the displacements and internal forces of a non-prismatic beam. The 

displacement results, when compared with an extremely refined finite element model, were consistent with the 

proposed model. Additionally, the internal forces in the bar with a variable axis and cross-section differ from those 

obtained for a constant axis, as the internal forces are described according to the equation of the structure's axis. 
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