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Abstract. A numerical study on the cross-flow (CF) vortex-induced vibration (VIV) of a steel catenary riser (SCR)
under uniform flow load in three-dimensional large displacement condition is conducted. The model is based on
the coupling of a three-dimensional (3D) co-rotational framework and a wake oscillator model, which includes ax-
ial, bending, and torsional degrees of freedom. These vary along the element length according to the discretization
using Hermitian functions. The wake oscillator model is used to study vortex shedding, the drag and lift forces
generated by the wake are described by the Van der Pol equations. The coupled equations are solved using the
Newmark-/ and Newton Raphson iterative scheme to obtain the VIV responses of the SCR. The VIV characteris-
tics at different positions of the SCR are numerically simulated. The study explores the impact of current velocity
on CF VIV. The results indicate that due to large deformations and flexible characteristics, the SCR predomi-
nantly vibrates at low frequencies, with the maximum vibration amplitude occurring in the transition segment, and
multi-frequency resonance dominates the VIV response of the SCR, especially in the hung off segment.
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1 Introduction

Steel Catenary Risers (SCRs) are essential transportation conduits that link seabed infrastructure to surface
vessels in the oil and gas sector. They encounter multiple loads due to marine dynamics, such as hydrodynamic
forces from waves and currents, internal flow impacts, and motions of the vessels[/1].

Vortex-induced vibration (VIV) arises from the creation and shedding of vortices around a structure, resulting
in oscillating forces and vibrations[2]. In contrast to top tension risers, the catenary form of a SCR introduces
geometric nonlinearity and intricate 3D loads. Consequently, the three-dimensional VIV response of a SCR can
substantially shorten the operational lifespan of the structure and compromise integrity of the system. Therefore,
accurate prediction of VIV responses is crucial for the effective maintenance and safe operation of these facilities.

Given the lengthy calculation process involved in computational fluid dynamics (CFD) and the limitations
of frequency domain methods in addressing nonlinearity[3]], time-domain wake oscillator models are now favored
for simulating VIV in offshore risers[4]. The Van der Pol wake oscillator is commonly used for predicting VIV
in risers. It uses the acceleration interaction between the wake oscillator and structural motion. Studies have
shown that the wake oscillator model can qualitatively capture the key VIV characteristics of risers. Skop and
Balasubramanian [S]] obtained quantitative agreement between the predictions of the diffusive van der Pol oscillator
and experimental data in linearly shear flow. Facchinetti[6] demonstrated that the diffusive interaction along the
continuously distributed van der Pol oscillators could model cellular vortex shedding in shear flow. Kurushina et
al.[7]] developed a new wake oscillator-based model in two dimensions to investigate VIV of a horizontal flexible
structure with pinned-pinned ends in uniform flow. He et al.[8] used the generalized integral transform technique
to study the vortex-induced vibration response of a fluid-conveying riser.

Although research on vortex-induced vibration is extensive in top tension risers, studies on the vortex-induced
vibration of SCRs are still relatively limited. Yuan et al.[9] applied Euler-Bernoulli beam theory to investigate the
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nonlinear seabed-riser interaction of an SCR considering the VIV response. Liu etal.[10] described the dynamics
of flexible cylindrical bodies using the Euler-Bernoulli beam theory with absolute nodal coordinate formulation
(ANCEF) and studied the VIV response of SCRs using the finite element method. Li et al.[11] established a numeri-
cal model for calculating SCRs VIV and fatigue damage. The structural dynamics were accurately simulated using
ANCEF. Ma and Srinil[[12]] proposed an advanced numerical prediction model based on a nonlinear wake oscillator,
utilizing the finite difference method to study the multi-directional VIV response of SCRs with structural bending.

This work conducts a numerical study on the cross-flow vortex-induced vibration of a steel catenary riser
under uniform flow in three-dimensional large displacement conditions. The model is based on the coupling of
a three-dimensional co-rotational framework and a wake oscillator model. The wake oscillator model is used to
study vortex shedding, the drag and lift forces generated by the wake are described by the Van der Pol equa-
tions. The coupled equations are solved using the Newmark-$ and Newton Raphson iterative scheme to obtain the
VIV response of the SCR. Numerical simulations of the VIV characteristics at different positions of the SCR are
conducted, exploring the impact of current velocity on the VIV of SCR.

2 Beam element of SCR

2.1 Reference configurations

Y

Figure 1. SCR element basic displaced frame in space.

The finite element method is employed based on the co-rotational formulation. It pertains to a linear space
reference configuration, defined by the updated coordinates of two nodes. The assumption is that the element
experiences large displacement and rotation, yet only minor strain. In this formulation, all variables reference a
co-rotational configuration derived from the initial undeformed state via geometric transformations, such as rigid-
body translations and rotations. This approach is commonly used in structural analysis, especially effective in
dealing with large deformation problems.

In the co-rotational configuration method, we define three different states of configuration, as shown in Fig[]
The global system (X, Y, Z) serves as a spatial coordinate system that references the structure. The initial local
element system (X, y, z) corresponds to the undeformed configuration. The local element system (x,y,z) is associated
with the reference configuration. In the co-rotational formulation, the element node systems (¢1, to, t3), (q1, g2,
q3) are coordinate systems associated with each node.

2.2 Basic formulation for large rotations

In 3-D transformations involving a reference vector, Rodrigues’ rotation formula[13] dictates the use of an
orthogonal spatial transformation matrix R.(6).

V] = R(G)VO (1)

In this case, the rotation matrix can be represented using quaternions,
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where gT = [ go q1 ¢q2 qs | are the so-called Euler parameters[14].

3 Fluid loads

In a riser system, the loads can be generated due to the flow of fluids both internally and externally. In this
work, only the the buoyancy caused by the external fluid, fluid dynamics drag, and loads caused by vortex shedding
are considered.

3.1 Fluid buoyancy

From the conditions of equilibrium, the equivalent nodal forces caused by the buoyancy of the external fluid
are obtained[/15]]:

F} =1/2p,A.d and  F? =1/2p,A.l (3)

where Fbl7 Fb2 are the equivalent nodal forces; p,, are the external fluid density; / is the element lenth; A, are
the external area.

3.2 Hydrodynamic forces

The structure is subjected to a uniform flow with a speed of U and density of py,. The structure experiences
fluid dynamic effects such as added mass, drag, and lift forces. We define the instantaneous relative velocity
perceived by the riser Uy, based on U and the riser displacement u as: U, = U — u. In this model, the
computation of fluid forces at every section and moment considers only the normal component of the flow velocity.
The projection of relative velocity is denoted as U,.. We define the vector U, as the projection of U .

Added mass force

The added mass force per unit length is,

F, = m,(U — i), 4)
vyith my, = C, pr27r /4 being the fluid added mass. The added mass coefficient C,, is assumed to be 1 [16] and
U=0.

Drag and lift forces
The drag and lift forces per unit length are:
1
Fdrag = §CDwa |Up'r‘ Upr7

X 5)
Fig = §CprD |Upr‘ Upr -R.

where R is a tensor of rotation, these forces are derived from experimental wake oscillator method, and drag and
lift coefficients Cp and C. Ignoring the vortex-induced vibration in the inline direction, the lift coefficient is
modeled by,

1
Cr = icLoq (6)

where Cp,q is the lift coefficient amplitude. The variable ¢ is the dimensionless cross-flow wake variable. It
can be seen as the normalized lift coefficient and [17]:
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. . A
G+ eQy (q2—1)q+Q§q:5uq (7)

where Q; = 27.5,U cos ¢/ D is the vortex-shedding angular frequency, and St is the Strouhal number, € and
A are dimensionless parameters, i, is the cross-flow accelerations and defined as:

iy = i - (e1 X tu) @®)

with ty is the normalized projection of U. e; is the unit vector along the element axis.
The total hydrodynamic load results from the vector summation of Eqs[] and [5] from which we can obtain
the nodal equivalent hydrodynamics,

1 1
o= S+ S ©)

where f! and f7 are the forces at the two nodes of the element, respectively.
The distributed load from Eq[9]is transferred to the nodes using the element interpolation matrix,

14
th/ HTf,d¢ (10)
0

where £ represents the local coordinate along element axis, F';, is the nodal vector of hydrodynamic loads.

4 Finite element method
4.1 Element stiffness matrices

An appropriate formulation to compute elastic large displacement analysis, along with its consistent nu-
merical implementation, is presented under Update and Total Lagrangian approaches. In the presence of large
deflections, force equilibrium equations must be formulated for the deformed configuration. To accommodate ge-
ometric changes as external forces are applied, the solution to the nonlinear problem is linearized through a series
of steps, each representing a load or time step. However, the presence of large deflections introduces nonlinear

terms in strain-displacement equations, which are essential for calculating the stiffness matrix. Under a typical 3D
nonlinear finite element approach the stiffness matrix is formed by linear contribution Ky, gives by[18]],

K, = / BTCBdV (1)
174

where By, is the linear compatibility matrix, C' is the elasticity matrix, and a non-linear geometric contribution
K written as,

Ko = / BLTBgdV (12)
Vv

where B¢ is the non-linear compatibility matrix, 7 is the stress matrix.

4.2 Element mass and damping matrices

M = / psHTHAV, D= / «rHTHAV (13)
1% 1%
where M is the mass matrix; D is the damping matrix; H is the interpolation matrix; p; is the mass density

for element; x is the material damping parameter. In this paper, the structure damping is Rayleigh proportional
damping.

4.3 Numerical implementation
The global dynamic equilibrium equation presented in matrix form as follows:

Mt+Atfl + Dt+Atu + H'AtKAu — t+AtR o IH—AtF (14)
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where Au is the incremental displacements vector; t+ALR s the global external force vector; and 'F is the

structure internal forces vector at time .
A step-by-step procedure has been implemented considering,

1 1 1
t+ALs Au — ta— [ — —1) ti
YT A"t T aar (25 ) b
A ="+ (1 - 9) Attt + y AT

t+Atu — tu + Au

5)

where 3 and -y are Newmark parameters.

5 Results and discussion

In order to model the simple SCR and start the dynamic analsis, an analytical approach presented by Faltinsen[[19]
was considered. The parameters of the SCR model and environment parameters are shown in Table[I] The empir-
ical values in the wake oscillator equation are set as A = 12 and € = 0.3, assuming Cp = 1.2, Co = 0.3, and St
= 0.17. Figure[2] shows a schematic diagram of a SCR in uniform flow. Key points along the SCR, including the
touchdown point (TDP) at node 200, transition point (TP) at node 1001, and hung off point (HOP) at node 2500,
are selected for vibration response and frequency analysis.

I~

== initial configuration

—]
Top node _ 0
—> (1179.2, 0, 0) node 2500
l—— R
)
l——>

—>
current

Anchor node
(0,0,-1847.9)

Figure 2. Initial configuration for the steel catenary riser under uniform flow.

Table 1. Parameters of the riser model and environmen

Parameters Values
Riser Length: L (m) 2600
Outer diameter: D (m) 0.2032
Inner diameter: d (m) 0.165
Young’s modulus: F (Pa) 2.06 x 10!
Pipe density: p, (kg/m>) 7850
Sea water density: p., (kg/m®) 1024
Horizontal length(m) 1179.2
Water depth (m) 1847.9
Soil stiffness (N/m) 22500

Figures [3] to 5] show that the vibration displacement at the three positions of the SCR increases with the
current velocity. The vibration amplitude of TP is greater than that of HOP and TDP, and the same is true for the
frequency amplitude. The main frequency remains consistent across different current velocities. It is observed
that the vibration response of the SCR in the CF direction is dominated by multiple frequencies. Notably, low
frequencies dominate the displacement vibrations and correspond to larger amplitudes, especially in the hanging

section.
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Figure 3. Time history and spectrum of frequency of VIV displacement of the SCR in the CF direction at HOP
under uniform flow with different velocities.
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Figure 4. Time history and spectrum of frequency of VIV displacement of the SCR in the CF direction at TP under
uniform flow with different velocities.
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Figure 5. Time history and spectrum of frequency of VIV displacement of the SCR in the CF direction at TDP
under uniform flow with different velocities.

6 Conclusions

This study analyzes the cross-flow vortex-induced vibration response of a steel catenary riser under uniform
flow. The fluid dynamics effects on the riser are represented using the Van der Pol wake oscillators. The com-
plex interactions between the riser structure dynamics and ocean current were simulated using the finite element
method and the Newmark integrator. Numerical results indicate that due to the large deformations and flexibility of
the SCR, its vibrations are predominantly at low frequencies, with the maximum amplitude occurring in the tran-
sition section. The vortex-induced vibration response of the SCR is primarily characterized by multi-frequency
resonance, especially in the hanging section. The study also emphasizes the necessity of considering large dis-
placements and non-linearities in the modeling process. This research contributes to a deeper understanding of the
challenges faced during the operation of offshore risers, particularly the impact of vortex-induced vibrations on the
risers. This work can be extended to more realistic environments such as shear flow, conveying internal fluids.
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