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Abstract. The diagnosis of epilepsy is conducted through visual inspection of electroencephalogram (EEG) signal 

recordings. However, due to the variations in convulsive disorders, it can be challenging for clinicians to constantly 

monitor the patient for seizure type, especially because EEG records contain hours of signal. Nevertheless, these 

patterns present in EEG signals can also be identified through signal classification methods based on signal 

processing and machine learning approaches. In light of this, this study proposes the development of a 

methodology for epileptic seizure type classification based on analysis of time-frequency characteristics of EEG 

signals, using Continuous Wavelet Transform (CWT) and joint moments of time-frequency distribution. Epileptic 

seizure classification was performed using a convolutional neural network (CNN), employing k-fold cross-

validation methods. Accuracy, sensitivity, specificity, and area under the curve (AUC) metrics were obtained to 

validate this algorithm. The achieved results for the CNN classifier were 96.54% accuracy, 96.54% sensitivity, 

96.54% specificity, and AUC = 0.90%. 

Keywords: Electroencephalogram Signal (EEG); Epileptic Seizures; Time-Frequency Feature Extraction; 

Machine Learning; Convolutional Neural Network (CNN). 

1  Introduction 

Epilepsy is a chronic brain syndrome characterized by abnormal electrical activities of neurons, potentially 

resulting in recurrent and spontaneous seizures. It is estimated that over 50 million people worldwide are diagnosed 

with epilepsy, making this neurological disorder one of the most common globally [1] [2]. To confirm the diagnosis 

of epilepsy, a non-invasive technique called Electroencephalography (EEG) is used. In this examination, multiple 

electrodes are placed on the individual's scalp to capture the electro-physiological activity from the brain, with 

each electrode corresponding to a distinct channel. The result of these measurements is the electroencephalogram 

(EEG), which consists of the set of signals recorded in each channel by the cranial electrodes [3]. 

Epileptic seizures detection is a fundamental step in the diagnosis of epilepsy and for seizure control. 

Moreover, the identification of different types of crises can help to determine the original location and pattern of 

seizures, enabling appropriate prescription of treatments, whether through medication or surgery [4]. This process 

involves visual observation of EEG recordings by experienced neurophysiologists in clinical practice. Through 

this visual analysis, it is possible to identify and classify the seizure present in the EEG signal. Typically, the 

recording is multi-channel, which makes the investigation a complex and time-consuming task. Humans become 
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more susceptible to making errors due to fatigue when carrying out a demanding task such as analysis a signal on 

monitor for long periods. In this context, automate the process of analysis of signals obtained through EEG could 

result in more efficient diagnosis [4]. 

Automated detection systems, developed using signal processing techniques and machine learning, are 

excellent tools for analyzing complex, non-stationary, and nonlinear EEG signals [5]. Automated EEG analysis 

often involves extracting features from EEG signals in different domains, such as time, frequency, and time-

frequency, as well as analysis of nonlinear signals. In frequency domain techniques, the spectra of EEG signals 

are obtained using Fourier Transform (FT) or Fast Fourier Transform (FFT), followed by feature extraction from 

the spectra. In joint time-frequency techniques, a two-dimensional (2D) time-frequency representation is obtained 

using Short-Time Fourier Transform (STFT) or Continuous Wavelet Transform (CWT) [7]. In this way, 

appropriate discriminative features of transformed EEG signals are extracted. Generally, statistical features of first, 

second, and third orders, such as mean, variance, kurtosis, and skewness, are obtained independently. In this work, 

feature extraction related to joint moments of the generated time-frequency spectrogram (CWT) is performed. 

After obtaining appropriate features, the final step involves applying a suitable classifier. In the literature, 

various classifiers are proposed for binary and multiclass classification of different subsets (classes) of EEG 

signals. For example, [8] investigated the use of different machine learning (ML) and deep learning (DL) based 

algorithms for epileptic seizure detection. The algorithms considered include conventional ML (ANN, SVM, and 

KNN), advanced DL (CNN/RNN/LSTM), and RF-based ML. 

Thus, this study proposes the development of an automatic methodology to assist neurologists in classifying 

types of epileptic seizures based on EEG signal processing. Continuous Wavelet Transform (CWT) and Joint 

Moments are used for feature extraction in the time-frequency domain, in addition to employing a Convolutional 

Neural Network (CNN). The types of seizures studied in this investigation were non-specific generalized seizure 

(GNSZ), complex partial seizure (CPSZ), non-specific focal seizure (FNSZ), and tonic-clonic seizure (TCSZ). 

2  Epileptic seizures 

Epilepsy is a neurological condition characterized by recurrent episodes of abnormal brain activity, known 

as epileptic seizures. This condition can manifest in various forms and present a wide range of types. One way to 

classify epilepsy is according to the Operational Classification of Seizure Types by the International League 

Against Epilepsy (ILAE) of 2017 [9]. According to the origin of the seizures, they can be focal, starting in a 

specific part of the brain, or generalized, involving the entire brain activity in a widespread manner. An epileptic 

seizure consists of the transient occurrence of signs resulting from excessive abnormal brain activity. In the focal 

aware seizure, the individual is conscious of themselves and their surroundings while experiencing the seizure. 

During a focal impaired awareness seizure, loss of consciousness occurs. In addition to classification regarding 

perception, seizures can be sub grouped into motor symptoms and signs seizures, affecting muscle activity, or non-

motor at seizure onset. Focal seizures that evolve into bilateral tonic-clonic seizures originate in one hemisphere 

of the brain but spread to the entire brain as time progresses. Generalized non-motor onset seizures, also called 

absence seizures, only have a duration of a few seconds and are characterized by loss of awareness with the 

surroundings or the individual. It is worth noting that the ILAE 2017 classification may present specific 

subcategories in motor and non-motor symptoms seizures. Seizures of unknown onset may be labeled as 

unclassified, referring to situations where it is not possible to determine the onset of the seizure [9]. 

3   Signal processing in the time-frequency domain 

Signal processing in the time-frequency domain encompasses a set of methods, techniques, and algorithms 

that analyze the information contained in a signal simultaneously in the time and frequency domains. This approach 

allows for a more comprehensive understanding of the signal's behavior over time and across different frequencies. 

One of the main advantages of signal processing in the time-frequency domain is its ability to capture information 

about the temporal evolution and spectral composition of the signal. While traditional techniques, such as the 

Fourier transform, provide information only about the frequencies present in the signal at a given moment in time, 

time-frequency representations enable visualization of how the different frequency components of the signal 

change over time. This joint approach to the temporal and spectral behavior of the signal provides a deeper and 
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more comprehensive understanding of the signal under study. This is because the two classic variables representing 

the signal, time (t), and frequency (f), are used concurrently to represent the signal, allowing for a more complete 

and detailed analysis. 

3.1 Wavelet transform 

The Continuous Wavelet Transform (CWT) is a linear integral transform that can be employed in the analysis 

of features of non-stationary signals. It is useful for extracting information about variations in certain frequency 

bands and/or for detecting local structures present over [10]. Given a signal x, its integral transform is defined as:  

𝑋𝑇𝐶𝑊(𝜏, 𝑠) =
1

√|𝑠|
 ∫ 𝑥(𝑡)
∞

−∞
𝜓∗ (

𝑡− 𝜏

𝑠
)  𝑑𝑡                                                                                           (1) 

The transform of the signal 𝑋𝑇𝐶𝑊(𝜏, 𝑠) is a function that depends on the translation parameter 𝜏 and the scale 

parameter 𝑠. The mother wavelet function 𝜓∗ indicates that the complex conjugate is used in the case of a complex 

wavelet. The signal's energy is normalized at each scale by dividing the wavelet coefficients by  1/√𝑠 . This 

ensures that the wavelets have the same energy at all scales [11]. The wavelet function is contracted and dilated 

by changing the scale parameter 𝑠. Variation in scale 𝑠 alters not only the central frequency 𝑓𝑐 of the wavelet but 

also the length of the window. Thus, the scale 𝑠 is used instead of frequency to represent the results of the 

Continuous Wavelet Transform. The translation parameter 𝜏 specifies the location of the wavelet in time; through 

this alteration, the wavelet can be shifted over the signal [11]. By keeping the scale 𝑠 constant and varying the 

translation 𝜏, the lines of the time-scale plane are filled; by varying the scale 𝑠 and keeping the translation τ 

constant, the columns of the time-scale plane are filled. The elements in 𝑋𝑇𝐶𝑊(𝜏, 𝑠) are called wavelet coefficients, 

where each wavelet coefficient is associated with a scale (frequency) and a point in the time domain. 

3.2 Joint Moments of the Time-Frequency Distribution 

The moments of the time-frequency distribution provide an efficient way to characterize signals whose 

frequencies vary over time, i.e., are non-stationary [12][13]. The time-frequency distribution generated by time-

frequency analysis techniques captures the behavior of signal frequency variations over time. However, treating 

these distributions directly as signal attributes can result in high computational burden and potentially introduce 

unrelated and undesirable characteristics. 

On the other hand, obtaining low-dimensional time-frequency domain moments offer a method to capture 

the essential signal characteristics in a much smaller data package. The use of these moments significantly reduces 

the computational burden for feature extraction and comparison—a fundamental benefit for real-time operation 

[12][13][14]. 

The joint time-frequency moments of a non-stationary signal comprise a set of time-varying parameters that 

characterize the signal spectrum as it evolves over time [12][13][14]. In theory, the joint time-frequency moments 

of a signal, for the non-centralized case, can be directly obtained through (2): 

⟨𝑡
𝑛
𝜔
𝑚⟩ = ∬𝑡

𝑛
𝜔
𝑚
𝜌(𝑡, 𝜔)  𝑑𝑡𝑑𝜔                                                                                             (2) 

Similarly, for the conditional spectral moment 〈𝑡𝑛〉𝜔 of order n and for the conditional temporal moment 

〈𝜔𝑚〉𝑡  of order m of a signal, respectively (3) and (4), 

〈𝑡𝑛〉𝜔 = 
1

𝑃(𝜔)
∫ 𝑡𝑛𝜌(𝑡,𝜔)  𝑑𝑡                                                                                           (3) 

〈𝜔𝑚〉𝑡 = 
1

𝑃(𝑡)
∫𝜔𝑚𝜌(𝑡, 𝜔)  𝑑𝜔                                                                                                    (4) 

So, it is possible to obtain the joint moments by (5) 

⟨𝑡
𝑛
𝜔
𝑚⟩ = ∫ 𝑡𝑛〈𝜔𝑚〉𝑡𝑃(𝑡) 𝑑𝑡 = ∫𝜔

𝑚〈𝑡𝑛〉𝜔 𝑃(𝜔)𝑑𝜔                                                                                   (5) 

In the presented equation, P(t) and P(ω) represent the time and frequency distributions, respectively, of the 

time-frequency distribution ρ (t, ω). Additionally, each moment is associated with a specific order set, with the 

first four orders being the statistical properties of mean, variance, skewness, and kurtosis [12][13]. 
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4  Methodology 

This study aims to develop an intelligent methodology for the identification of different types of epileptic 

seizures, including non-specific generalized (GNSZ), complex partial (CPSZ), non-specific focal (FNSZ), and 

tonic-clonic (TCSZ). The adopted approach involves extracting joint moments from the time-frequency 

distribution of the EEG signal, obtained through Continuous Wavelet Transform, using Convolutional Neural 

Networks (CNN). Figure 1 presents the schematic diagram of the proposed epileptic seizure classification to be 

developed.  

Fig. 1 Schematic diagram of the proposed methodology 

4.1 Database 

The EEG signals used in this study were obtained from the public database TUSZ (The TUH EEG Seizure 

Corpus), which is a subset of the database known as TUEG (The Temple University Hospital EEG Data Corpus), 

provided by the Temple University Hospital (TUH) in Philadelphia, Pennsylvania. TUSZ is recognized as the 

largest currently available open-source dataset, focused on epileptic patients, and offers high-quality annotations 

for different types of epileptic seizures, along with detailed patient metadata describing the clinical history [15]. 

The EEG recording sessions were conducted while patients were at rest, following established technical 

standards for clinical manifestations. Sampling rates vary in the database but are always at least 250 Hz. The 

electrodes were positioned on the patients' scalps according to the international 10/20 system, resulting in 

examinations with 22 channels [16]. 

4.2 Preprocessing of EEG Signal 

For this study, we selected EEG signals from 60 patients who exhibited four different types of epileptic 

seizures: GNSZ, CPSZ, TCSZ, and FNSZ. These types of seizures were chosen due to their representativeness, as 

they involve a larger number of patients, providing a robust sample for analysis. Additionally, these categories 

encompass both focal and generalized seizures, covering a variety of epileptic manifestations, as discussed in other 

studies [17][18]. 

Initially, the signals from each channel were segmented into 10-second intervals and windowed using the 

rectangular function, without overlap, as described by [15]. This resulted in 1200 10-second segments of EEG 

signals for each type of seizure, totaling 4800 segments for analysis. As there is no consensus in the specialized 

literature regarding the ideal segment size for EEG signal analysis [15], we explored four different durations: 0.5 

s, 1 s, 5 s, and 10 s, in order to determine the most suitable for our methodology. 

4.3 Feature Extraction of EEG Signal 

Prior to the feature extraction step, the set of matrices 𝑀𝑗 was obtained from the T-th multichannel segment 

of the EEG signal, containing ch channels, of pattern j to be recognized, i.e., the classes GNSZ, CPSZ, FNSZ, and 
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TCSZ, as described in (6): 

 𝑀𝑗 = { 𝑋1
𝑗
, 𝑋2

𝑗
, 𝑋3 

𝑗
… . , 𝑋𝑇

𝑗
  }                                                                                                     (6) 

X is a matrix containing EEG signal samples of size 𝑐ℎ × 𝑛, where n is the number of samples per segment, 

given by the multiplication of the segment duration T=10s by the sampling frequency fa. Following the formation 

of set 𝑀𝑗, the feature extraction step is performed. In this phase, the Continuous Wavelet Transform Morse, Morlet, 

and Bump are applied to each row of matrix X belonging to set 𝑀𝑗, where each row of matrix X represents a 

channel of the EEG signal. Thus, for the T-th matrix of 𝑀𝑗, three sets of time-frequency energy distribution 

matrices are obtained for each TCW, represented by (7): 

ζj(t,f)= 

{
 
 

 
 

[
 
 
 
 W1

(t, f)

W2
(t, f)

⋮

Wch
(t, f)

]
 
 
 
 

1

,  

[
 
 
 
 W1

(t, f)

W2
(t, f)

⋮

Wch
(t, f)

]
 
 
 
 

2

, 

[
 
 
 
 W1

(t, f)

W2
(t, f)

⋮

Wch
(t, f)

]
 
 
 
 

3

,…, 

[
 
 
 
 W1

(t, f)

W2
(t, f)

⋮

Wch
(t, f)

]
 
 
 
 

T}
 
 

 
 

                                                                                   (7) 

Where 

𝑊𝑐ℎ
(𝑡,𝑓)(𝑀 𝑥 𝑛) =

[
 
 
 
 
𝑊𝑠11 𝑊𝑠12 … 𝑊𝑠1𝑛

𝑊𝑠21 𝑊𝑠22 … 𝑊𝑠2𝑛

⋮
𝑊𝑠𝑀1

⋮
𝑊𝑠𝑀2

⋱      ⋮     
… 𝑊𝑠𝑀𝑛]

 
 
 
 

                                                                                                 (8) 

It is the time-frequency energy distribution matrix of the ch-th channel of the T-th segment. M is the number 

of analysis scales of the Continuous Wavelet Transform, 𝑠𝑀 is the M-th scale of the TCW, and 𝑊𝑠𝑀𝑛  is the n-th 

coefficient of the TCW at scale 𝑠𝑀. 

Once the set  𝜁𝑗(𝑡, 𝑓) is formed, four joint time-frequency moments are generated from the ch-th matrix 

𝑊𝑐ℎ
(𝑡,𝑓)

 of the T-th segment: joint mean - μ(t,f) (9), joint variance – 𝜎(t,f)
2  (10), joint skewness – λ(t,f) (11), and joint 

kurtosis – κ(t,f) (12). Thus, four sets of statistical metrics are obtained for the different TCW: 

ℳµ(𝑡,𝑓)
𝑗

=  {𝑀𝑑1
𝑗
,𝑀𝑑2

𝑗
, 𝑀𝑑3

𝑗
 , … ,𝑀𝑑𝑇

𝑗
 }                                                                                                  (9) 

𝓋
𝜎(𝑡,𝑓)
2
𝑗

=  {𝑉𝑎𝑟1
𝑗
, 𝑉𝑎𝑟2

𝑗
, 𝑉𝑎𝑟3

𝑗
 ,… , 𝑉𝑎𝑟𝑇

𝑗
 }                                                                                               (10) 

𝒜𝜆(𝑡,𝑓)

𝑗
= {𝐴𝑠𝑠1

𝑗
, 𝐴𝑠𝑠2

𝑗
, 𝐴𝑠𝑠3

𝑗
 , … , 𝐴𝑠𝑠𝑇

𝑗
 }                                                                                               (11) 

𝒦𝜅(𝑡,𝑓)
𝑗

= {𝐶𝑢𝑟𝑡1
𝑗
, 𝐶𝑢𝑟𝑡2

𝑗
, 𝐶𝑢𝑟𝑡3

𝑗
 , … , 𝐶𝑢𝑟𝑡𝑇

𝑗
 }                                                                                            (12) 

Where 

𝑀𝑑𝑇
𝑗
= 
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𝑐ℎ𝑥1

 (16) 

 

Therefore, the attributes extracted from the channels of each segment, given in equations (13), (14), (15), and 

(16), are aggregated by concatenating the mean of the attribute sets. Thus, each class GNSZ, CPSZ, FNSZ, and 

TCSZ is characterized by the set 𝒱𝐶𝑗  composed of the attribute vector 𝒱𝐶𝑗, whose elements are the integration 

indices of the time-frequency moments  𝐸𝑐µ(t,f), 𝐸𝑐𝜎(t,f)
2 , 𝐸𝑐𝜆(t,f) , 𝐸𝑐𝜅(t,f)(17): 

𝒱𝐶𝑗  =  {𝑉𝑒1
𝑗
, 𝑉𝑒2

𝑗
, 𝑉𝑒3

𝑗
 , … , 𝑉𝑒𝑇

𝑗
}                                                                                                  (17) 
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4.4 Classification  

After the extraction and vectorization of the time-frequency characteristics, the data were analyzed to identify 

possible anomalies, trends, and patterns. We used the K-fold method to randomly divide the datasets into 10 

subsets, each with approximately the same number of samples. Eighty percent of the dataset was allocated for 

training the CNN model, allowing us to assess the algorithm's robustness in the face of data changes. The remaining 

twenty percent was reserved as a test set to evaluate the model's validity. Our proposed pattern classification model 

aims to classify an input signal into four categories: GNSZ, CPSZ, FNSZ, and TCSZ. We developed the CNN 

model using the Python language, with the Keras programming interface and the TensorFlow library. Initially, we 

established a base model with convolutional networks and proceeded to evaluate its performance, adjusting 

hyperparameters such as the number of filters and kernel size to different values. Hyperparameter tuning was 

performed using the GridSearch algorithm from the Scikit-learn library, seeking the best combination of values 

for each of them. Based on this tuning, we designed the 18-layer CNN model, composed of CNN-1D convolutional 

layers, BatchNormalization, Flatten, and MLP layers, as illustrated in Figure 2. 

Fig. 2 CNN Classifier Model 

The performance of the proposed CNN model in discriminating the classes was evaluated using metrics such 

as accuracy, sensitivity, specificity, precision, area under the ROC curve (AUC), and confusion matrix. 

5  RESULTS 

The results of the CNN model training can be observed in Table 1. The model achieved an accuracy of 

96.54%, precision of 96.54%, sensitivity of 96.54%, specificity of 96.54%, and an AUC of 90%. These numbers 

demonstrate the effectiveness of the model in classifying epileptic seizures with high accuracy and consistency. 

TABLE 1 - CNN MODEL RESULTS. 

Metrics Value (%) 

Accuracy 96,54 

AUC (Area Under Curve) 90,00 

Sensitivity 96,54 

Precision 96,54 

Specificity 96,54 
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Fig. 3 Confusion Matrix for Classification of the Proposed CNN Model 

The confusion matrix presented in Figure 3 illustrates the classification results of the CNN model for the four 

classes of epileptic seizures: GNSZ, CPSZ, FNSZ, and TCSZ. The values in the diagonal cells indicate the 

percentage of correct classifications, while the values off the diagonal represent the percentage of incorrect 

classifications. It is noted that the model achieved high rates of correct classification for all classes, with 98.29% 

for GNSZ, 97.28% for CPSZ, 98.67% for FNSZ, and 91.92% for TCSZ. Although the lowest rate of correct 

classification was observed for the TCSZ class, the model still achieved considerable performance in this category. 

For comparative analysis, the results of the proposed model were compared with those of other studies that 

used the same TUSZ database for the classification of epileptic seizures. Table 2 presents the performance of 

different intelligent algorithms, highlighting metrics such as accuracy (acc.), sensitivity (sen.), specificity (spec.), 

precision (pre.), F1 Score (F1), and area under the ROC curve (AUC). It is observed that the CNN model proposed 

in this study outperforms most of the algorithms presented and exhibits performance comparable to high-

performance models based on Long Short-Term Memory (LSTM) networks. These results emphasize the 

effectiveness and robustness of the proposed model in the classification of epileptic seizures. 

TABLE 2 - PERFORMANCE OF DIFFERENT INTELLIGENT ALGORITHM MODELS 

AUTHORS CLASSIFIERS METRICS (%) 

Golmohammadi et al., 2017 [19] CNN/LSTM sen 30.83 

spec 97.10 

Wijayanto et al., 2019 [20] SVM acc 95 

Vanabelle et al., 2019 [17] Gradient Boosting sen 71,6; 

pre 40.01 

Saputro et al., 2019 [21] SVM spec 76,41 

Stragier; Vanabelle; Tahry, 2021 

[22] 

XGBoost sen 90.25 spec 97.83 

acc 91,4 

Abou-Abbas et al., 2022 [23] Random Forest sen 61.4 

spec 89.6 

F1 37.2 

Thuwajit et al., 2022 [24] CNN AUC 95 

pre 91 

F1 S 91 

He et al., 2022 [25] GAT + BiLSTM acc 98.02 

sen 97.7 

Ayodele et al., 2020 [26] CNN spec 99.06 

auc 97.8 

sen 72,5 

6  Conclusion  

This study presented a methodology for the accurate identification of epileptic seizures, using a convolutional 

neural network (CNN) model to categorize EEG signals according to the type of seizure, based on features 
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extracted in the time-frequency domain. The results obtained demonstrated a high rate of correct classification for 

all classes of seizures studied: GNSZ, CPSZ, FNSZ, and TCSZ. 

The application of deep CNNs to differentiate and classify epileptic seizures based on time-frequency 

features, including continuous wavelet transform and joint moments, proved highly effective in the accurate 

identification of epileptic seizures. This method offers a promising approach for early diagnosis and the 

development of personalized therapies for patients with epilepsy. 

The results obtained in this study provide solid evidence that the use of advanced signal processing techniques 

and machine learning can aid in the diagnosis and treatment of epilepsy. This approach not only assists medical 

professionals in making more accurate diagnoses but also offers the opportunity for prescribing more appropriate 

therapies tailored to the individual needs of each patient. 

Furthermore, by eliminating the unpredictable nature of epileptic seizures, this method contributes 

significantly to improving the quality of life of patients affected by this debilitating medical condition. The accurate 

prediction of epileptic seizures enables faster and more effective intervention, reducing the risks associated with 

these events and providing greater safety and well-being to patients and their caregivers. 

Ultimately, this study represents a significant advancement in the field of epilepsy, highlighting the potential 

of signal processing and machine learning approaches to improve the diagnosis, treatment, and quality of life of 

patients affected by this complex neurological condition. 
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