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Abstract. The demands of health care and well-being for humanity haven been requiring more detailed knowledge 

about movement and force generated by the musculoskeletal system. Structural analysis tools play an important 

role in that scenario, as in vivo and in vitro tests can be inconvenient. Thus, computational simulations are used to 

complement experimental these tests, offering cost and time advantages. This work aims to numerically model the 

behavior of the human upper limb, including muscle actions and joint movements, through a computational code 

based on the Positional Finite Element Method (PFEM). The proposed modelling treats muscle tissue as a 

composite material and uses Saint-Venant-Kirchhoff hyperelastic model for describing the stress-strain 

relationship. Sliding connections are employed to simulate the elbow joint’s flexion and extension movements, 

and Lagrange multipliers are used for introducing kinematic conditions to the mechanical system. A numerical 

example of muscle contraction is employed to demonstrate the potential of the proposed model for analyzing 

biological structures. 
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1  Introduction 

The generation of movement and the production of force by the set of muscles, tendons, bones, and ligaments 

in various parts of the body have been a topic of high interest in research in recent years. In his review, Humphrey 

[1] points out that increasingly detailed and precise knowledge of the biomechanical behavior of these structures 

is required to meet the demands of health care and human well-being. Soft tissues exhibit complex behavior and 

are typically subjected to high levels of deformation. Added to this is the need to simultaneously describe the 

movement of joints triggered by muscle action taking into account contact and sliding patterns between bone 

surfaces and the variable position of the rotation axis [2]. 

The purpose of this work is to bring some contribution to the modelling of the human musculoskeletal system 

and the comprehension of its macro-mechanical behavior. The focus lies on the upper limb for representing the 

elbow movements of flexion and extension. A finite element model was developed including biomechanical 

properties of muscles, connective tissues, bones and joints. 

The muscle behavior is divided into passive and active components, as done by many previous works, such 

as Böl et al. [3], Lamsfuss and Bargmann [4] and Baiocco et al. [5]. The first one responds elastically to external 

loads, while the second one has the ability to contract and produce force. Instead of assuming that each point in 

the muscle tissue is simultaneously occupied by both components [3], this work treats the muscle fibers and the 

connective tissues around them discretely, considering their behavior similarly to composite materials in 

engineering [4,5]. The various layers of connective tissue surrounding the muscle fibers form the matrix, while the 

fibers themselves constitute the composite’s reinforcement. Besides providing reinforcement, the fibers also 

exhibit active behavior. The constitutive relationship in both matrix and fibers is described by Saint-Venant-
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Kirchhoff hyperelastic model.  

The elbow complex is chosen to be modeled along with the mechanical behavior of skeletal muscles and is 

treated as a hinge joint, meaning a planar joint that exhibits a single degree of freedom: rotation around an axis 

orthogonal to the plane of analysis [2]. Flexion and extension movements are rotations around the perpendicular 

axis to the plane of analysis, passing through the center of the joint. Studies reveal that this axis practically does 

not change position, which indicates a movement of pure rotation [6]. Besides, the motion that occurs in this joint 

is predominantly two-dimensional, with subtle deviation from the plane of analysis [7], which are neglected in this 

work. 

Different types of finite elements are employed to discretize the biological structures. The triangular based 

prismatic element described by Carrazedo and Coda [8] are used for bones and soft tissues, while the activated 

truss element presented by Coda et al. [9] represents muscle fibers. To achieve the coupled behavior of a fiber-

reinforced composite material, an immersion procedure of truss elements in a prismatic domain is addressed, 

following the work by Sampaio et al. [10]. The connection between bones in joints is obtained by the sliding 

connections formulation proposed by Siqueira et al. [11], allowing bones to display relative motion between each 

other while keeping contact. 

To solve the mechanical problem, the Positional Finite Element Method (PFEM) [12,13] is adopted, a total 

Lagrangian directly non-linear geometric version of the traditional framework. In this approach, the unknowns are 

the element node’s positions and the Newton-Raphson iterative procedure is used to solve the system of 

equilibrium equations. 

2  Equilibrium equations and solution procedure 

The equilibrium equations of a mechanical system are here obtained by the Principle of Stationary 

Mechanical Energy, which states that the system reaches equilibrium when the variation of the total mechanical 

energy is zero. Ogden [14] and Coda [15] are recommended for further details. 

In static analysis, the total mechanical energy of a system with constraints, denoted by Π, can be written as 

follows: 

 Π = −ℙ + 𝕌 + ℂ.  (1) 

ℙ is the potential energy of external load, gathering the contributions of both concentrated and distributed 

conservative loads. 𝕌 is the strain energy and corresponds to the integral of the specific strain energy 𝑢 over the 

system’s initial volume 𝑉0. Employing Saint-Venant-Kirchhoff hyperelastic model, this portion of energy is 

written as: 

 𝕌 = ∫ 𝑢 𝑑𝑉0V0
= ∫

1

2
𝑬(𝑌⃗ ) ∶ 𝕮 ∶ 𝑬(𝑌⃗ ) 𝑑𝑉0V0

,  (2) 

in which 𝕮 is the fourth-order constitutive tensor of the adopted constitutive model and 𝑬 is the Green-Lagrange 

strain tensor. Aiming at further use of the positional formulation for FEM, the strain tensor is taken as a function 

of the current nodal positions 𝑌⃗ , unknowns of the problem. 

Finally, ℂ is the constraint potential energy. This work imposes kinematic constraints to the system by 

Lagrange multipliers, so that this portion of energy can be written as: 

 ℂ = λ⃗ ⋅ 𝑐 (𝑌⃗ ),  (3) 

in which 𝑐  are constraint equations, also taken as a function of the nodal positions 𝑌⃗ , and 𝜆  are the Lagrange 

multipliers, unknowns of the problem as well. 

The Principle of Stationary Mechanical Energy states that the system reaches equilibrium when the variation 

of mechanical energy is zero. Taking the variation of mechanical energy in relation to 𝑌⃗  and 𝜆 , and considering 

the variation of both variables is arbitrary, the equilibrium equations result: 

 −{
𝜕ℙ/𝜕𝑌⃗ 

0⃗ 
} + {

𝜕𝕌/𝜕𝑌⃗ 

0⃗ 
} + {

𝜕ℂ/𝜕𝑌⃗ 

𝜕ℂ/𝜕𝜆 
} = −𝐹 𝑒𝑥𝑡 + 𝐹 𝑖𝑛𝑡(𝑌⃗ )  + 𝐹 𝑐𝑜𝑛(𝑌⃗ , 𝜆 ) = 0⃗ ,  (4) 

in which 𝐹 𝑒𝑥𝑡 , 𝐹 𝑖𝑛𝑡 and 𝐹 𝑐𝑜𝑛 are named vectors of external forces, internal forces and constraint forces, 

respectively. 
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The equilibrium equations are geometrically nonlinear and the Newton-Raphson method is employed to solve 

them. The solution procedure begins with the definition of the mechanical unbalanced vector 𝑔  for a trial set of 

variables 𝑌⃗ 0 and 𝜆 0, according to the expression below: 

 𝑔 (𝑌⃗ 0, 𝜆 0) = −𝐹 𝑒𝑥𝑡 + 𝐹 𝑖𝑛𝑡(𝑌⃗ 0) + 𝐹 𝑐𝑜𝑛(𝑌⃗ 0, 𝜆 0) = 0⃗ .  (5) 

From the first-order Taylor series expansion of eq. (5) arises the system of equations for determining the 

correction values that updates the solution: 

 {Δ𝑌⃗ 

Δ𝜆 
} = −𝑯−𝟏 ⋅ 𝑔 (𝑌⃗ 0, 𝜆 0),  (6) 

in which 𝑯 is the Hessian matrix for the trial variables. Considering that the external loads are conservative, this 

quantity can be written as: 

 𝑯 =
𝜕𝐹 𝒊𝒏𝒕

𝜕{𝑌⃗ , 𝜆 }
|

𝑌⃗ 0,𝜆⃗⃗ 0

+
𝜕𝐹 𝒄𝒐𝒏

𝜕{𝑌⃗ , 𝜆 }
|

𝑌⃗ 0,𝜆⃗⃗ 0

. (7) 

The tentative solution is then updated by: 

 {𝑌⃗
 

𝜆 
} = {

𝑌⃗ 0

𝜆 0
} + {Δ𝑌⃗ 

Δ𝜆 
}.  (8) 

With the new trial vector, the new mechanical unbalanced vector 𝑔  is calculated and the whole process is 

repeated until the error satisfies the following convergence criterion: 

 𝐸𝑟𝑟𝑜𝑟 =
Δ𝑌⃗ 

𝑋 
≤ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒. (9) 

3  Positional approach for finite elements 

In this section, the individual description of each element employed in this work is addressed first. Then, a 

strategy for embedding truss elements in a prismatic domain is presented. In addition to the works cited throughout 

the text ahead, Coda [15] is recommended for further details. 

The triangular based prismatic element is a three-dimensional element generated from the extrusion of a 

triangular base, describe by Carrazedo and Coda [8]. In this work, the element’s nodes are distributed according 

to a cubic approximation for the basis and a linear approximation for the extruded dimension. For such element, 

Green-Lagrange strain can be written as: 

 𝑬𝒑𝒓𝒊𝒔𝒎 =
1

2
(𝑪 − 𝑰) =

1

2
(𝑨𝑻𝑨 − 𝑰).  (10) 

In Equation (10), 𝑪 = 𝑨𝑻𝑨 is Cauchy strain tensor and 𝑨 is the deformation gradient, which can be expressed 

as a function of nodal positions [8]. From that, the strain energy portion can be written as in eq. (2).  

The activated truss element, in turn, has a linear approximation and its strain energy is only related to changes 

in length. It does not resist to transverse loads as well. The activation of this element corresponds to the ability to 

control the distance between its ends by imposing its length, as presented by Coda et al. [9]. For the uniaxial 

description adopted, Green-Lagrange strain assumes the following format: 

 𝐸𝑡𝑟𝑢𝑠𝑠 =
1

2
(

𝐿2

𝐿0𝑛
2 −1),  (11) 

in which 𝐿0𝑛 is the initial natural length of the element, corresponding to the initial length plus an increment Δ𝐿, 

that is: 

 𝐿0𝑛 = 𝐿0 + ΔL.  (12) 

The parameters 𝐿0 and 𝐿 are, respectively, the initial length and the current length and are both written as a 

function of nodal positions [9]. Thus, Green-Lagrange strain for the truss element, eq. (11), is expressed in terms 

of positions and can be applied in eq. (2). 
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The numerical strategy to embed truss elements into prismatic elements is an extension to the three-

dimensional domain of the procedure proposed by Sampaio et al. [10]. This technique consists of writing the truss 

nodes’ positions as a function of the prismatic element nodes’ positions in both initial and current configurations: 

 X̅𝑗
𝑘 = 𝜓𝑙(𝜉 

𝑘)𝑋̂𝑗
𝑙 ,  (13) 

 Y̅𝑗
𝑘 = 𝜓𝑙(𝜉 

𝑘)𝑌̂𝑗
𝑙 .  (14) 

𝜓𝑙(𝜉 
𝑘) are the prismatic element’s shape functions evaluated on the dimensionless coordinates 𝜉  of the truss 

node 𝑘. The symbol (•̅) represents the parameters related to the truss element, while (•̂) represents the parameters 

related to the prismatic elements. 

The strain energy stored in a reinforced body is equal to the sum of the strain energy stored in the matrix and 

the bars. Thus, once truss nodes’ positions are written as eq. (13) and eq. (14), the vector of internal forces and the 

Hessian matrix are given by: 

 (𝐹𝑖
𝑙)

𝑖𝑛𝑡
=

𝜕𝕌

𝜕𝑌̂𝑖
𝑙
=

𝜕(𝕌̂ + 𝕌̅)

𝜕𝑌̂𝑖
𝑙

=
𝜕𝕌̂

𝜕𝑌̂𝑖
𝑙
+

𝜕𝕌̅

𝜕𝑌̅𝑗
𝑘

𝜕𝑌̅𝑗
𝑘

𝜕𝑌̂𝑖
𝑙
= (𝐹̂𝑖

𝑙)
𝑖𝑛𝑡

+ (𝐹̅𝑖
𝑘)

𝑖𝑛𝑡
𝜓𝑙(𝜉 

𝑘), (15) 

 𝐻𝑖𝑙𝑔𝑧 =
𝜕(𝕌̂ + 𝕌̅)

𝜕𝑌̂𝑖
𝑙𝜕𝑌̂𝑔

𝑧
=

𝜕𝕌̂

𝜕𝑌̂𝑖
𝑙𝜕𝑌̂𝑔

𝑧
+

𝜕𝕌̅

𝜕𝑌̅𝑗
𝑘𝜕𝑌̅𝑚

𝑛

𝜕𝑌̅𝑗
𝑘

𝜕𝑌̂𝑖
𝑙

𝜕𝑌̅𝑚
𝑛

𝜕𝑌̂𝑔
𝑧

= 𝐻̂𝑖𝑙𝑔𝑧 + 𝐻̅𝑖𝑘𝑔𝑛𝜓𝑙(𝜉 
𝑘)𝜓𝑧(𝜉 

𝑛). (16) 

It is important to note that this strategy allows the insertion of truss elements in any position of the domain 

without increasing the problem’s number of degrees of freedom. Besides, it ensures perfect adherence between the 

truss elements and the matrix [10]. 

4  Sliding connections 

Sliding connections are the joints between two surfaces that allow them to slide over one another without 

losing contact neither overlapping each other. This kind of attachment can be taken into account in the analysis of 

structural systems by introducing the constraint potential energy portion to the mechanical energy, as it is done in 

section 2. 

Considering a planar system discretized in finite elements, a sliding connection corresponds to a sliding node 

𝑃̂ that is constrained to move over a path, associated to a unidimensional finite element called ‘path element’. The 

contact point over the path element is referred to as 𝑃̅ and its position is defined by an arc-length parameter 𝑠𝑃, 

which is taken as an independent variable of the problem [11]. 

To ensure that the sliding node keeps contact to the path, the coordinates of point 𝑃̂ must be equal to the 

coordinates of point 𝑃̅. As finite elements discretize the geometry of the bodies, this condition can be directly 

expressed by using their nodal positions. Thus, the constraint equations 𝑐  can be written as follows: 

 𝑐𝑖 = 𝑌̂𝑖
𝑃 − 𝜙𝑙(𝜉𝑃)𝑌̅𝑖

𝑙 = 0𝑖 . (17) 

Equation (17) is valid for any pair of points in contact. The index 𝑖 = 1,2 represents the plane’s orthogonal 

directions,  𝑌̂𝑖
𝑃 is the current position of point 𝑃̂, 𝑌̅𝑖

𝑙  is the current position of the 𝑙 nodes from the path element, 

𝜙𝑙(𝜉𝑃) are the shape functions associated with the nodes of the path element and 𝜉𝑃 is the dimensionless coordinate 

of the contact point. The approximation 𝑌̅𝑖
𝑃 = 𝜙𝑙(𝜉𝑃)𝑌̅𝑖

𝑙 was used for the contact point’s position on the path 

element. 

This work models the sliding among triangular based prismatic elements through a coupling strategy between 

path elements and prismatic elements in the contact regions, based on Siqueira et al. [11]. By using nodal positions 

as parameters for both elements, the coupling occurs by kinematical compatibility of these variables, associating 

their degrees of freedom. Sliding nodes and path elements are defined over the edge of prismatic elements that 

slide against each other, ensuring that all nodes of a sliding edge are restricted to move over the set of path 

elements. 

The coupling strategy represents the sliding in the plane defined by 𝑥1 and 𝑥2 axes. Path elements are defined 

on both entrance and exit planes of 𝑥3 axis, as depicted in Fig. 1. The adopted path element has a cubic 

approximation, to minimally accommodate the shape of the prismatic element on which they are defined. 
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Figure 1. Coupling between prismatic elements and path elements (contact points apart for clarity). 

5  Numerical example: the upper limb simulation 

Saint-Venant-Kirchhoff hyperelastic constitutive model and the sliding connections formulation is applied 

on the modelling of biological structures. The system chosen in this work is the upper limb of the human body and 

the adopted geometry is inspired on the images of the right upper limb of a 26-year-old female patient, obtained 

from a computed tomography (CT) scan [16]. The model is presented on Fig. 2. 

 

Figure 2. Human upper limb model and joint detail (contact points apart for clarity). 

The domain is discretized by triangular based prismatic elements and the fibers are composed of truss 

elements, inserted in mid-plan of the prismatic matrix. The mechanical behavior of all materials is described by 

Saint-Venant-Kirchhoff model. The elastic moduli are 0.2415 MPa for connective tissue (red) [10], 1000 MPa for 

tendon (gray) [17], 17500 MPa for bone (green) [17], 4.65 MPa for fibers [10] and 0.1 MPa for other soft tissue 

(yellow), skin and fat (blue). Poisson's ratio is made zero for all materials. 

The relative motion between bone materials in the elbow joint is represented by the sliding connections 

formulation. Path elements are introduced on the right edges of humerus, while sliding nodes are inserted at all 

nodes contained within the sliding boundary of the forearm bone end in contact with the humerus. 

In the first analysis, a length variation of -0.25 mm is applied to all fiber in the anterior compartment, which 

is equivalent of approximately a 12.5% reduction of the initial fiber length. Meanwhile, the fibers in the posterior 

compartment are free to stretch. In the second analysis, a length variation of -0.4 mm is applied to all fibers in the 
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posterior compartment (approximately 20% of initial length), while the fibers in the anterior compartment are free 

to stretch. 

As expected, fiber activation in the anterior compartment causes elbow flexion. On the other hand, fiber 

activation in the posterior compartment generates elbow extension. Upon removing the imposed length variations, 

the structure returns to the initial configuration. Displacements in the 𝑥1 direction are depicted in Fig. 3, which 

also details small areas of the model where the material reverses its orientation. Although this phenomenon is 

physically inadequate, Saint-Venant-Kirchhoff hyperelastic model allows it to occur when the regime of moderate 

strains is exceeded [14,15].  

 

Figure 3. Displacements in the 𝑥1 direction for contraction in the (a) anterior compartment and (b) posterior 

compartment, detailing areas where orientation reversion occurs. 

Cauchy normal stress in the 𝑥1 direction is illustrated in Fig. 4 for both analyses. All fibers are submitted to 

traction, which means that muscle contraction tensions not only the contracted fibers of one compartment, but also 

the fibers in the opposite compartment, which undergo passive stretching. The stresses occur with greater intensity 

in the contracted fibers, responsible for performing the limb movement. Regarding the matrix muscle materials, 

compression stresses are developed in the connective tissue of the compartment where contraction occurs, while 

tensile stresses are observed in the tendons. In the opposite compartment, both the muscular connective tissue and 

the tendons are subjected to tensile stresses. 

 

Figure 4. Cauchy normal stress in the 𝑥1 direction 

The distal arm bone surface maintains contact with the proximal forearm bone surface during the whole 

process of both analyses, sliding over one another for flexion and extension movements. The contact forces in the 

sliding nodes are directed towards the axis of rotation of the forearm, positioned at the center of the elbow. This is 

consistent with the proposed geometric modeling, which displays the paths elements and the sliding nodes as two 

concentric circle arcs. 
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6  Conclusions 

The simulation of the upper limb reveals that it is possible to describe the planar mechanical response of 

human body limbs by the content here discussed. The sliding connections formulation proved to be efficient in 

constraining two bodies to move along one another without losing contact and, therefore, representing a human 

joint. Saint-Venant-Kirchhoff hyperelastic constitutive model works well within moderate strains, but becomes 

inconsistent when describing the mechanical behavior in large strains, therefore not suiting many problems 

involving soft tissues. The computational code’s potential for analyzing biological structures as a composite 

material (matrix/fiber) in three-dimensional space and for applying more complex constitutive models is also 

confirmed. 
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