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Abstract. The main purpose in this article is to derive a free vibration solution based on Boundary Element Method 

(BEM) for Euler-Bernoulli beams made of Functionally Graded Materials (FGM) that have properties that vary 

continuously through the thickness direction according to the volume fraction of constituents. A boundary element 

solution for any problem is obtained using integral equations and fundamental solutions defined on continuum, 

and algebraic equations for the discretized problem. In this paper, original discussions on deriving both integral 

equations and fundamental solutions for dynamic composite beam problems are properly made. Numerical results 

of different cases of mechanical properties and boundary conditions are considered and compared to other 

published works. 
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1  Introduction 

Nonhomogeneous materials such as laminated composites and Functionally Graded Materials have been 

attracted attentions of designers due to excellent performance in terms of high stiffness and strength-to-weight 

ratios. However, laminated composed materials suffer inherent problems associated with de-bonding and de-

lamination phenomena caused mainly by larger inter-laminar stresses. Functionally Graded Materials (FGM) are 

alternative composites where those undesirable effects are reduced.  FGM composites are made of two or more 

distinct constituents and have mechanical properties that vary continuously with respect to spatial coordinates 

according to the volume fraction of constituents. Many works have been published on FGM problems since topics 

on design, processing, and applications until mathematical theories and their modeling [3,4]. Most of FGM beam 

analysis has been done using analytical and finite element solutions for Euler-Bernoulli and Timoshenko models 

[6-10]. For many engineering problems Boundary Element Method (BEM) is an alternative numerical technique 

to FEM, but this has not been verified for FGM beam theories. In fact, BEM solutions have been applied to the 

analysis of beams and frames made of homogeneous materials, for instance, Banerjee [12], Antes [13], Beskos 

and Providakis [14], Antes et al. [15] and laminated composite beam theories Cavalcanti and Mendonca [16]. In 

this paper, a direct BEM formulation is established for Euler-Bernoulli FGM so that integral equations, 

fundamental solutions, and algebraic systems are properly derived. Only in-plane bending problem is taken into 

account and the BEM results are compared to analytical solutions. 
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2  Real and Fundamental Problems 

The Euler-Bernoulli beam theory is based on the following hypotheses:  plane sections initially normal to 

the mid-surface remain plane and normal to the mid-surface during the bending; the transverse normal stress is 

small compared to the axial normal stress; displacement, rotation, and strain are assumed to be smooth (i.e., small) 

fields; damping response is assumed to be negligible. The assumed kinematic relations associated with the axial 

and in-plane transverse displacements of the beam can be written as follows:  

 
𝑈(𝑥, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑧 𝜕𝑤(𝑥, 𝑡) 𝜕𝑥⁄ ,    𝑊(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡) , (1) 

 

where 𝑢, 𝑣 are in-plane and w transverse displacements, respectively.  z is the depth of point with respect to mid-

plane. The mid-plane kinematic relations are: 

 
𝜀𝑥 = 𝜕𝑢/𝜕𝑥, 𝜀𝑦 = 𝜕𝑣/𝜕𝑦,  𝛾𝑥𝑦 = 𝜕𝑢/𝜕𝑦 + 𝜕𝑣/𝜕𝑥, 𝑘𝑥 = −𝜕

2𝑤/𝜕𝑥2, 𝑘𝑦 = −𝜕
2𝑤/𝜕𝑦2, 𝑘𝑥𝑦 = −2𝜕2𝑤/𝜕𝑥𝜕𝑦. (2) 

 

In this study is considered the case of a functionally graded beam made of a combination of ceramic and 

metal. According to the rule of mixtures, the effective material properties (such as Young’s modulus E, Poisson’s 

ratio ν and the mass density ρ) are assumed to be: 

 
𝐸(𝑧) = 𝐸𝑚𝑉𝑚 + 𝐸𝑐𝑉𝑐,  𝜈(𝑧) = 𝜈𝑚𝑉𝑚 + 𝜈𝑐𝑉𝑐 and 𝜌(𝑧) = 𝜌𝑚𝑉𝑚 + 𝜌𝑐𝑉𝑐 , (3) 

 

where 𝐸𝑚 , 𝜈𝑚, 𝜌𝑚 , 𝐸𝑐 , 𝜈𝑐 𝑎𝑛𝑑 𝜌𝑐  are material properties associated with metal and the ceramic, respectively.  

𝑉𝑚  and 𝑉𝑐 are their volume fractions.  The volume relations between the two constituents and the ceramic volume 

fraction in terms of power law distribution across the height of the beam are: 
 

𝑉𝑚 + 𝑉𝑐 = 1,   𝑉𝑐 = (𝑧/ℎ + 1/2)
𝑛, (4) 

 

where the power law exponent n is defined on range 0 ≤ 𝑛 ≤ ∞, with 𝑛 = 0 for a fully ceramic material. 

Substituting Eq. (4) into Eq. (3), results:  

 
𝐸(𝑧) = 𝐸𝑚 + (𝐸𝑐 − 𝐸𝑚)(𝑧/ℎ + 1/2)

𝑛, 𝜈(𝑧) = 𝜈𝑚 + (𝜈𝑐 − 𝜈𝑚)(𝑧/ℎ + 1/2)
𝑛, 𝜌(𝑧) = 𝜌𝑚 + (𝜌𝑐 − 𝜌𝑚)(𝑧/ℎ + 1/2)

𝑛, (5) 

 

In FGM beams, the values for mass coefficient and stiffness coefficients associated with extensional, 

coupling and bending problems can be respectively written as: 

 

𝐼1 = 𝑏 ∫ 𝜌(𝑧)𝑑𝑧 
ℎ 2⁄

−ℎ 2⁄
= 𝑏ℎ[𝜌𝑚 + (𝜌𝑐 − 𝜌𝑚)/(𝑛 + 1)],  (𝐴11 , 𝐵11 , 𝐷11 ) = 𝑏 ∫ (1, 𝑧, 𝑧2)𝐸(𝑧)/[1 − 𝜈2(𝑧)]𝑑𝑧 

ℎ 2⁄

−ℎ 2⁄
. (6) 

 

The evaluation of the integrals in Eq. (6) can be done numerically. If Poisson’s ratio is assumed constant 

𝜈(𝑧) = 𝜈  across the beam height, closed forms for stiffness coefficients can be written as in refs. [1] and [2].  

 
𝐴11 = 𝑏ℎ[𝐸𝑚 + (𝐸𝑐 − 𝐸𝑚)/(𝑛 + 1)]/(1 − 𝜈

2), 𝐵11 = 𝑏ℎ2(𝐸𝑐 − 𝐸𝑚)𝑛/[2(1 − 𝜈
2)(𝑛 + 1)(𝑛 + 2)] 

𝐷11 = 𝑏ℎ3{𝐸𝑚/12 + (𝐸𝑐 − 𝐸𝑚)(𝑛
2 + 𝑛 + 2)/[4(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)]}/(1 − 𝜈2). (7) 

 

Normal force and bending moment of the beam Eq. (5) can be written in terms of displacement as follows: 

 
𝑁(𝑥, 𝑡) = 𝐴11 𝜕𝑢(𝑥, 𝑡) 𝜕𝑥⁄ − 𝐵11 𝜕

2𝑤(𝑥, 𝑡) 𝜕𝑥2⁄ ,  𝑀(𝑥, 𝑡) = 𝐵11 𝜕𝑢(𝑥, 𝑡) 𝜕𝑥⁄ − 𝐷11 𝜕
2𝑤(𝑥, 𝑡) 𝜕𝑥2⁄ . (8) 

 

Applying the equilibrium conditions, the following relationships can be written: 

  
𝜕𝑁(𝑥, 𝑡)/𝜕𝑥 + 𝑝𝑥(𝑥, 𝑡) = 𝑓𝐼𝑥(𝑥, 𝑡), 𝜕𝑉(𝑥, 𝑡)/𝜕𝑥 + 𝑝𝑧(𝑥, 𝑡) = 𝑓𝐼𝑧 (𝑥, 𝑡), 𝜕𝑀(𝑥, 𝑡)/𝜕𝑥 + 𝑉(𝑥, 𝑡) = 0 (9) 

 

where 𝑓𝐼𝑥(𝑥, 𝑡) = 𝐼1 𝜕
2𝑢(𝑥, 𝑡) 𝜕𝑡2⁄  and 𝑓𝐼𝑧(𝑥, 𝑡) = 𝐼1 𝜕

2𝑤(𝑥, 𝑡) 𝜕𝑡2⁄  are inertial forces acting on opposing beam 

displacements. 𝑉(𝑥, 𝑡) is the shear force. 

 

Substituting Eq. (8) into Eq. (9), the motion equations in terms of displacements can be finally written: 

𝐴11 𝜕
2𝑢(𝑥, 𝑡) 𝜕𝑥2⁄ − 𝐵11 𝜕

3𝑤(𝑥, 𝑡) 𝜕𝑥3⁄ = 𝐼1 𝜕
2𝑢(𝑥, 𝑡) 𝜕𝑡2⁄ − 𝑝𝑥(𝑥, 𝑡)  

𝐵11 𝜕
3𝑢(𝑥, 𝑡) 𝜕𝑥3⁄ − 𝐷11 𝜕

4𝑤(𝑥, 𝑡) 𝜕𝑥4⁄ = 𝐼1 𝜕
2𝑤(𝑥, 𝑡) 𝜕𝑡2⁄ − 𝑝𝑧(𝑥, 𝑡) (10) 
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If axial and transverse loads act harmonically in time 𝑝𝑥(𝑥, 𝑡) = 𝑝𝑥(𝑥)𝑒
𝑖𝜔𝑡and  𝑝𝑧(𝑥, 𝑡) = 𝑝𝑧(𝑥)𝑒

𝑖𝜔𝑡 , the 

beam responses are harmonic as well. Thus, motion equations given in Eq. (10) should be changed to:  

 
[𝐿]{𝑢} = {𝑓} (11) 

 

where 𝜔 denotes circular frequency and and operator matrix [L] and vectors {u}, {f} are: 
 

[𝐿] = [
𝐴11

𝑑2

𝑑𝑥2
+ 𝑆1 −𝐵11

𝑑3

𝑑𝑥3

𝐵11
𝑑3

𝑑𝑥3
−𝐷11

𝑑4

𝑑𝑥4
+ 𝑆1

] , {𝑢} = {
𝑢̆(𝑥)
𝑤̆(𝑥)

} , {𝑓} = − {
𝑝̆𝑥(𝑥)
𝑝̆𝑧(𝑥)

}, 𝑆1 = 𝐼1𝜔
2 (12) 

 

The fundamental problem of Euler-Bernoulli FGM beam is associated with an infinite domain member under 

point loads (𝑝𝑥
∗ ,𝑝𝑧

∗) and is governed by same relations applied to the real problem. Therefore, the fundamental 

governing equations are analogous to Eq. (11), resulting in: 
 

[𝐿][𝑢∗] = [𝑓∗] (13) 

 

where [𝑢∗] and [𝑓∗] is the fundamental solution matrix given by: 

[𝑢∗] = [
𝑢̆𝐹
∗ (𝑥, 𝑥) 𝑢̆𝑃

∗ (𝑥, 𝑥)

𝑤̆𝐹
∗(𝑥, 𝑥) 𝑤̆𝑃

∗(𝑥, 𝑥)
] , [𝑓

∗
]= −[

𝑝̆𝑥
∗(𝑥, 𝑥) 0
0 𝑝̆𝑧

∗(𝑥, 𝑥)
] = − [

𝛿(𝑥, 𝑥) 0
0 𝛿(𝑥, 𝑥)

] (14) 

 

With (𝑢̆𝐹
∗ ,𝑤̆𝐹

∗) denoting axial and transverse displacement fundamental solutions when only the axial load 

𝑝𝑥
∗(𝑥, 𝑥̂) = 𝛿(𝑥, 𝑥̂) is applied, while (𝑢̆𝑃

∗ ,𝑤̆𝑃
∗) denote the solution counterparts due to the transverse load 𝑝𝑧

∗(𝑥, 𝑥̂) =
𝛿(𝑥, 𝑥̂) only. Field and source points are labelled as 𝑥 and 𝑥̂. Dirac’s delta is represented by 𝛿(𝑥, 𝑥̂). 

The solution of Eq. (13) is established using method of Hormander [17], which is a decoupling technique 

where the solution is written in terms of a scalar parameter 𝜓, yielding to  
 

[𝑢∗] = [𝐿𝑐𝑜𝑓]𝑇𝜓 (15) 

 

Combining Eq. (14) and Eq. (12) gives: 
 

𝑑𝑒𝑡[𝐿] 𝜓 = −𝛿(𝑥, 𝑥) (16) 

 

After evaluating the determinant of [L], Eq. (16) can be written as follows: 

𝑑6𝜓 𝑑𝑥6⁄ + 𝐶1 𝑑
4𝜓 𝑑𝑥4⁄ + 𝐶2 𝑑

2𝜓 𝑑𝑥2⁄ + 𝐶3𝜓 = −𝛿(𝑥, 𝑥) (𝐵11
2 − 𝐴11𝐷11)⁄ , (17) 

 

where 𝐶1, 𝐶2 and 𝐶3 are coefficients of the differential equation that can be expressed by: 

𝐶1 = −𝐷11𝑆1 (𝐵11
2 − 𝐴11𝐷11)⁄ , 𝐶2 = 𝐴11𝑆1 (𝐵11

2 − 𝐴11𝐷11)⁄ , 𝐶3 = 𝑆1
2 (𝐵11

2 − 𝐴11𝐷11)⁄ , (18) 

 

For Eq. (17), the characteristic equation can be written as follows: 

𝑦3 + 𝐶1𝑦
2 + 𝐶2𝑦 + 𝐶3 =  0. (19) 

 

The nature of the roots from cubic equation in Eq. (19) affects directly the choice of the set of solutions 

for the uncoupled ordinary differential equation given in Eq. (16). A positive sign of the discriminant of the reduced 

cubic equation given in Eq. (19) results in on real positive root and two complex roots. On the other hand, the 

negative discriminant provides three distinct real roots. If the discriminant is written in terms of frequencies and 

set to zero, the intervals between the frequency roots can provide information for the sign behavior of the 

discriminant. Making this study for Eq. (19), the frequency value 𝜔𝑟𝑒𝑓   is given by: 

 

𝜔𝑟𝑒𝑓 = √1/𝐼1√𝑞1 +√𝑞1
2 + 𝑞2 (20) 

 

where: 

𝑞1 = (8 𝐴11
2𝐷11

2 − 36𝐴11 𝐷11𝐵11
2 + 27𝐵11

4)/(8𝐷11
3), 𝑞2 = (

𝐴11

𝐷11
)3(𝐵11

2 − 𝐴11𝐷11). (21) 

For frequencies lower than 𝜔𝑟𝑒𝑓  give discriminant negative, resulting in three distinct real roots for Eq. 

(20). Moreover, majority of frequency intensity and materials used in FGM beam give two negative roots. Under 

this root conditions, a solution proposed in this paper for decoupled ODE in Eq. (16) is:    
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      𝜓 = [𝑎1𝑓1(𝑟)/√−𝑦1 + 𝑎2𝑔1(𝑟)/√𝑦2 + 𝑎3ℎ1(𝑟)/√−𝑦3]/𝐾 (19) 

 

where 𝑎1 = (𝑦2 − 𝑦3)/𝜆, 𝑎2 = (𝑦1 − 𝑦3)/𝜆 ,   𝑎3 = (𝑦1 − 𝑦2)/𝜆  , 𝐾 = 2(𝐵11
2 − 𝐴11𝐷11),        f1(𝑟) = sin (𝑟√−𝑦1),  

𝑔1(𝑟) = sinh (𝑟√𝑦2),  ℎ1(𝑟) = sin (𝑟√−𝑦3), 𝜆 = −(𝑦1 − 𝑦2)(𝑦1 − 𝑦3)(𝑦2 − 𝑦3).   
 

Using Eq. (15), displacement fundamental solutions can be written in terms of 𝜓, resulting in: 

 
 𝑢̆𝐹
∗ (𝑥, 𝑥) = −𝐷11𝑑

4𝜓/𝑑𝑟4 + 𝑆1𝜓, 𝑤̆𝐹
∗(𝑥, 𝑥) = −𝑠𝑔𝑛(𝑥, 𝑥)𝐵11𝑑

3𝜓/𝑑𝑟3  
𝑢̆𝑃
∗ (𝑥, 𝑥) = 𝑠𝑔𝑛(𝑥, 𝑥)𝐵11𝑑

3𝜓/𝑑𝑟3  and   𝑤̆𝑝
∗(𝑥, 𝑥) = 𝐴11𝑑

2𝜓/𝑑𝑟2 + 𝑆1𝜓 , (203) 

 

where 𝑑𝑛𝜓/𝑑𝑟𝑛 is higher order differentiation of  𝜓 with respect to r. 

Other displacement fundamental solutions of interest are: 

𝜃𝐹
∗(𝑥, 𝑥̂) = 𝑑𝑤̆𝐹

∗(𝑥, 𝑥̂) 𝑑𝑥⁄ = −𝐵11𝑑
4𝜓/𝑑𝑟4, 

𝜃𝑃
∗(𝑥, 𝑥̂) = 𝑑𝑤̆𝑃

∗(𝑥, 𝑥̂) 𝑑𝑥⁄ = 𝑠𝑔𝑛(𝑥, 𝑥̂)(𝐴11𝑑
3𝜓/𝑑𝑟3 + 𝑆1𝑑𝜓/𝑑𝑟), 

𝑑𝜃𝑃
∗(𝑥, 𝑥̂)/𝑑𝑥̂ = 𝜃𝑃,𝑥

∗ (𝑥, 𝑥̂) = −(𝐴11𝑑
4𝜓/𝑑𝑟4 + 𝑆1𝑑

2𝜓/𝑑𝑟2),  

𝑢̆𝑃,𝑥
∗ (𝑥, 𝑥̂) = 𝑑𝑢̆𝑃

∗ (𝑥, 𝑥̂) 𝑑𝑥̂⁄ = 𝑑𝑤̆𝐹
∗(𝑥, 𝑥̂) 𝑑𝑥⁄  , 𝑤̆𝑃,𝑥

∗ (𝑥, 𝑥̂) = 𝑑𝑤̆𝑃
∗(𝑥, 𝑥̂) 𝑑𝑥̂⁄ = −𝜃𝑃

∗(𝑥, 𝑥̂) , 

(214) 

 

and 𝑠𝑔𝑛(𝑥, 𝑥̂)  is the sign function and defined by 𝑠𝑔𝑛(𝑥, 𝑥̂) = 1 𝑖𝑓𝑥 > 𝑥̂  or  𝑠𝑔𝑛(𝑥, 𝑥̂) = −1 𝑖𝑓𝑥 < 𝑥̂. 

Force fundamental solutions can be obtained substituting Eq. (15) into Eq. (8), resulting: 
 

 

𝑁̆𝐹
∗(𝑥, 𝑥̂) = 𝑠𝑔𝑛(𝑥, 𝑥̂)[(𝐵11

2 − 𝐴11𝐷11)𝑑
5𝜓/𝑑𝑟5 + 𝐴11𝑆1d𝜓/𝑑r],   𝑀̆𝐹

∗(𝑥, 𝑥̂) = 𝑠𝑔𝑛(𝑥, 𝑥̂)𝐵11𝑆1d𝜓/𝑑r 
𝑉̆𝐹
∗(𝑥, 𝑥̂) = 𝐵11𝑆1𝑑

2𝜓/𝑑𝑟2, 𝑀̆𝑃
∗(𝑥, 𝑥̂) = (𝐵11

2 − 𝐴11𝐷11)𝑑
4𝜓/𝑑𝑟4 − 𝐴11𝑆1𝑑

2𝜓/𝑑𝑟2, 
𝑁𝑃
∗(𝑥, 𝑥) = −𝑉̆𝐹

∗(𝑥, 𝑥)  , 𝑉̆𝑃
∗(𝑥, 𝑥) = 𝑠𝑔𝑛(𝑥, 𝑥)𝐵11[(𝐵11

2 − 𝐴11𝐷11)𝑑
5𝜓/𝑑𝑟5 − 𝐴11𝑆1𝑑

3𝜓/𝑑𝑟3] . 

(225) 

 

Other force fundamental solutions of interest are: 

𝑀̆𝑃,𝑥
∗ (𝑥, 𝑥̂) = −𝑉̆𝑃

∗(𝑥, 𝑥̂),   𝑁̆𝑃,𝑥
∗ (𝑥, 𝑥̂) = −𝑑𝑁̆𝑃

∗(𝑥, 𝑥̂)/𝑑𝑥 = −𝐵11𝑆1𝑑
4𝜓/𝑑𝑟4, 

𝑉̆𝑃,𝑥
∗ (𝑥, 𝑥) = −𝑑𝑉̆𝑃

∗(𝑥, 𝑥)/𝑑𝑥 =  (𝐵11
2 − 𝐴11𝐷11)𝑑

6𝜓/𝑑𝑟6 − 𝐴11𝑆1𝑑
4𝜓/𝑑𝑟4 . 

 
(236) 

3  Integral equations and algebraic equations 

If Eq. (11) is weighted by corresponding fundamental solutions [𝑢∗]  associated with 𝑝𝑥
∗  or 𝑝𝑧

∗ loading, the 

method of weighted residuals states: 
                                   

∫

{
 
 

 
 

[
 
 
 𝑆1 + 𝐴11

𝑑2

𝑑𝑥2
−𝐵11

𝑑3

𝑑𝑥3

𝐵11
𝑑3

𝑑𝑥3
𝑆1 −𝐷11

𝑑4

𝑑𝑥4]
 
 
 

{
𝑢̆(𝑥)

𝑤̆(𝑥)
} + {

𝑝̆𝑥

𝑝̆𝑧
}

}
 
 

 
 
𝑇

[
𝑢𝐹
∗ (𝑥, 𝑥) 𝑢𝑃

∗ (𝑥, 𝑥)

𝑤𝐹
∗(𝑥, 𝑥) 𝑤𝑃

∗(𝑥, 𝑥)
] 𝑑𝑥 =

𝐿

0

{
0

0
}

𝑇

 (247) 

 

After applying conveniently successive integrations by parts of Eq. (27) and then with help of Eq. (8), 

integral equations for axial and transverse displacements can be written as follows: 

                                       
𝑢̆(𝑥) + [𝑁𝐹

∗(𝑥, 𝑥)𝑢̆(𝑥)]
0

𝐿
+ [𝑉̆𝐹

∗(𝑥, 𝑥)𝑤̆(𝑥)]
0

𝐿
− [𝑀̆𝐹

∗(𝑥, 𝑥)𝜃(𝑥)]
0

𝐿
= [𝑁(𝑥)𝑢̆𝐹

∗ (𝑥, 𝑥)]
0

𝐿
+  

[𝑉̆(𝑥)𝑤̆𝐹
∗(𝑥, 𝑥)]

0

𝐿
 −[𝑀̆(𝑥)𝜃𝐹

∗(𝑥, 𝑥)]
0

𝐿
+∫ [𝑝̆𝑥𝑢̆𝐹

∗ (𝑥, 𝑥) + 𝑝̆𝑧𝑤̆𝐹
∗(𝑥, 𝑥)]𝑑𝑥 ,

𝐿

0

 (258) 

 

  𝑤̆(𝑥̂) + [𝑁𝑃∗(𝑥, 𝑥)𝑢̆(𝑥)]0
𝐿
+ [𝑉̆𝑃

∗(𝑥, 𝑥)𝑤̆(𝑥)]
0

𝐿
− [𝑀̆𝑃

∗(𝑥, 𝑥)𝜃(𝑥)]
0

𝐿
= [𝑁(𝑥)𝑢̆𝑃

∗ (𝑥, 𝑥)]
0

𝐿
+  

[𝑉̆(𝑥)𝑤̆𝑃
∗(𝑥, 𝑥)]

0

𝐿
−  [𝑀̆(𝑥)𝜃𝑃

∗(𝑥, 𝑥)]
0

𝐿
+ ∫ [𝑝̆𝑥𝑢̆𝑃

∗ (𝑥, 𝑥) + 𝑝̆𝑧𝑤̆𝑃
∗(𝑥, 𝑥)]𝑑𝑥

𝐿

0
. (269) 

 

The Euler-Bernoulli FGM beam problems require three unknowns at boundary to be determined, so that an 

additional equation can be obtained by differentiation of Eq. (29) with respect to source point 𝑥̂, 𝜃(𝑥̂) =
𝑑𝑤̆(𝑥̂)/𝑑𝑥̂, yielding to slope integral equation: 

 

𝜃(𝑥) + [𝑁𝑃,𝑥
∗ (𝑥, 𝑥)𝑢̆(𝑥)]

0

𝐿
+ [𝑉̆𝑃,𝑥

∗ (𝑥, 𝑥)𝑤̆(𝑥)]
0

𝐿
− [𝑀̆𝑃,𝑥

∗ (𝑥, 𝑥)𝜃(𝑥)]
0

𝐿
= [𝑁(𝑥)𝑢̆𝑃

∗ (𝑥, 𝑥)]
0

𝐿
+ (30) 

[𝑉̆(𝑥)𝑤̆𝑃,𝑥
∗ (𝑥, 𝑥)]

0

𝐿
− [𝑀̆(𝑥)𝜃𝑃,𝑥

∗ (𝑥, 𝑥)]
0

𝐿
+∫ [𝑝̆𝑥𝑢̆𝑃,𝑥

∗ (𝑥, 𝑥) + 𝑝̆𝑧𝑤̆𝑃,𝑥
∗ (𝑥, 𝑥)]𝑑𝑥

𝐿

0

. (27) 
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The algebraic representation in terms of boundary quantities for displacements and for forces can be written 

by collocating the source at the edges of the beam, that is, for ˆ 0x    and x̂ L    with 0  , resulting: 

 
{𝑢̆} + [𝐻̂]{𝑢̆} = [𝐺]{𝑝̆} + {𝑏̆} , (28) 

 

where {𝑏̆} is a null vector for free vibration problems, while boundary vectors {𝑢̆} and  {𝑝} shown in Fig.1 are:  

 

{𝑢̆} = [𝑢̆𝑖 𝑤̆𝑖 𝜃𝑖 𝑢̆𝑗 𝑤̆𝑗 𝜃𝑗]𝑇 ,   {𝑝̆} = [𝑁𝑖 𝑉̆𝑖 𝑀̆𝑖 𝑁𝑗 𝑉̆𝑗 𝑀̆𝑗]
𝑇

.  

 

 
Figure 1- Boundary quantities: a) stress resultants, b) displacements 

 

The influence matrices [𝐻̂] and [G] in Eq. (32) have integral- free elements so that it is required the 

evaluation of their limits only, resulting in closed forms of influence matrices as follows: 

 

[𝐻̂] =

[
 
 
 
 
 
 
−1/2 0 0 𝛼1(𝐿) −𝛼2(𝐿) 𝛼3(𝐿)

0 −1/2 0 −𝛼4(𝐿) 𝛼5(𝐿) −𝛼6(𝐿)

0 0 −1/2 𝛼7(𝐿) −𝛼8(𝐿) 𝛼5(𝐿)

𝛼1(𝐿) 𝛼2(𝐿) 𝛼3(𝐿) −1/2 0 0

𝛼4(𝐿) 𝛼5(𝐿) 𝛼6(𝐿) 0 −1/2 0

𝛼7(𝐿) 𝛼8(𝐿) 𝛼5(𝐿) 0 0 −1/2 ]
 
 
 
 
 
 

,

[𝐺] =

[
 
 
 
 
 
 

0 0 0 −𝛽1(𝐿) 𝛽2(𝐿) −𝛽3(𝐿)

0 0 0 −𝛽2(𝐿) −𝛽4(𝐿) 𝛽5(𝐿)

0 0 0 𝛽3(𝐿) 𝛽5(𝐿) −𝛽6(𝐿)

𝛽1(𝐿) 𝛽2(𝐿) 𝛽3(𝐿) 0 0 0

−𝛽2(𝐿) 𝛽4(𝐿) 𝛽5(𝐿) 0 0 0

−𝛽3(𝐿) 𝛽5(𝐿) 𝛽6(𝐿) 0 0 0 ]
 
 
 
 
 
 

 

(33) 

where: 

 

𝛼1(𝑧) = (𝑒1𝑐𝑜𝑠1 + 𝑒2𝑐ℎ2 + 𝑒3𝑐𝑜𝑠3) 𝐾⁄ ,                 𝑒1 = 𝐴11𝑏1 − 𝐵11𝑦1𝑐1, 𝑒2 = 𝐴11𝑏2 − 𝐵11𝑦2𝑐2 

𝛼2(𝑧) = −(−𝑔1√−𝑦1𝑠𝑖𝑛1 + 𝑔2√𝑦2𝑠ℎ2−𝑔3√−𝑦3𝑠𝑖𝑛3) 𝐾⁄ ,       𝑒3 = 𝐴11𝑏3 − 𝐵11𝑦3𝑐3, 

𝛼3(𝑧) = − (𝑔1𝑐𝑜𝑠1 + 𝑔2𝑐ℎ2 + 𝑔3𝑐𝑜𝑠3) 𝐾⁄ ,           𝑔1 = 𝐵11𝑏1 − 𝐷11𝑦1𝑐1, 

𝛼4(𝑧) = − (𝑗1𝑠𝑖𝑛1 √−𝑦1⁄ + 𝑗2 𝑠ℎ2 √𝑦2⁄ + 𝑗3𝑠𝑖𝑛3 √−𝑦3⁄ ) 𝐾⁄ ,              𝑔2 = 𝐵11𝑏2 − 𝐷11𝑦2𝑐2, 

𝛼5(𝑧) = (𝑚1𝑐𝑜𝑠1 +𝑚2𝑐ℎ2 +𝑚3𝑐𝑜𝑠3) 𝐾⁄ , 𝑔3 = 𝐵11𝑏3 − 𝐷11𝑦3𝑐3, 𝑗1 = 𝐴11𝑐1(−𝑦1) − 𝐵11𝑦1𝑑1, 

𝛼6(𝑧) = (𝑚1𝑠𝑖𝑛1 √−𝑦1⁄ + 𝑚2 𝑠ℎ2 √𝑦2⁄ + 𝑚3𝑠𝑖𝑛3 √−𝑦3⁄ ) 𝐾⁄ , 𝑗2 = −𝐴11𝑐2(𝑦2) − 𝐵11𝑦2𝑑2, 

𝛼7(𝑧) = − (𝑗1𝑐𝑜𝑠1 + 𝑗2𝑐ℎ2 + 𝑗3𝑐𝑜𝑠3) 𝐾⁄ , 𝑗3 = 𝐴11𝑐3(−𝑦3) − 𝐵11𝑦3𝑑3, 𝑚1 = −𝐵11𝑐1𝑦1 − 𝐷11𝑦1𝑑1 

𝛼8(𝑧) = (𝑚1√−𝑦1𝑠𝑖𝑛1 +𝑚2√𝑦2𝑠ℎ2 +𝑚3√−𝑦3𝑠𝑖𝑛3) 𝐾⁄ ,                  𝑚2 = −𝐵11𝑐2𝑦2 − 𝐷11𝑦2𝑑2 

𝛽1(𝑧) = − (𝑏1𝑠𝑖𝑛1 √−𝑦1⁄ + 𝑏2𝑠ℎ2 √𝑦2⁄ + 𝑏3 𝑠𝑖𝑛3 √−𝑦3⁄ ) 𝐾⁄ ,             𝑚3 = −𝐵11𝑐3𝑦3 − 𝐷11𝑦3𝑑3 
𝛽2(𝑧) = (𝑐1𝑐𝑜𝑠1 + 𝑐2𝑐ℎ2 + 𝑐3𝑐𝑜𝑠3) 𝐾⁄ ,                      𝑏1 = (−𝐷11𝑦1

2 + 𝑆1)𝑎1 

𝛽3(𝑧) = (−𝑐1√−𝑦1𝑠𝑖𝑛1 + 𝑐2√𝑦2𝑠ℎ2 − 𝑐3√−𝑦3𝑠𝑖𝑛3) 𝐾⁄ ,                      𝑏2 = −(−𝐷11𝑦2
2 + 𝑆1)𝑎2 

𝛽4(𝑧) = − (𝑑1𝑠𝑖𝑛1 √−𝑦1⁄ + 𝑑2𝑠ℎ2 √𝑦2⁄ + 𝑑3 𝑠𝑖𝑛3 √−𝑦3⁄ ) 𝐾⁄ ,             𝑏3 = (−𝐷11𝑦3
2 + 𝑆1)𝑎3 

𝛽5(𝑧) = − (𝑑1𝑐𝑜𝑠1 + 𝑑2𝑐ℎ2 + 𝑑3𝑐𝑜𝑠3) 𝐾⁄ , 𝑐1 = −𝐵11𝑦1𝑎1, 𝑐2 = 𝐵11𝑦2𝑎2,         𝑐3 = −𝐵11𝑦3𝑎3, 

𝛽6(𝑧) = − (𝑑1√−𝑦1𝑠𝑖𝑛1 + 𝑑2√𝑦2𝑠ℎ2 + 𝑑3√−𝑦3𝑠𝑖𝑛3) 𝐾⁄ ,                        𝑑1 = (𝐴11𝑦1 + 𝑆1)𝑎1, 

𝑑2 = −(𝐴11𝑦2 + 𝑆1)𝑎2, 𝑑3 = (𝐴11𝑦3 + 𝑆1)𝑎3,    𝑠𝑖𝑛1 = 𝑠𝑖𝑛(𝐿√−𝑦1),       𝑠ℎ2 = 𝑠𝑖𝑛ℎ(𝐿√𝑦2), 

 𝑠𝑖𝑛3 = 𝑠𝑖𝑛(𝐿√−𝑦3),     𝑐𝑜𝑠1 = 𝑐𝑜𝑠(𝐿√−𝑦1),        𝑐ℎ2 = 𝑐𝑜𝑠ℎ(𝐿√𝑦2),               𝑐𝑜𝑠3 = 𝑐𝑜𝑠(𝐿√−𝑦3) 
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4  Numerical results 

Consider a functionally graded beam made of Alumina (𝐴𝑙2𝑂3) and Aluminium (Al) having aspect ratio of 

L/h = 20. Material properties of Alumina are E = 380 GPa, 𝜌 = 3960 𝑘𝑔/𝑚3 and 𝜈 = 0.3, while for Aluminium 

they are 𝐸𝐴𝑙 = 70 𝐺𝑃𝑎, 𝜌𝐴𝑙 = 2702 𝑘𝑔/𝑚3 and 𝜈𝐴𝑙 = 0.3. The results from BEM and validation analyses are 

presented in terms of the fraction volume index n and a dimensionless frequency parameter given by 𝛺̅ =

𝜔𝐿2√𝜌𝐴𝑙/𝐸𝐴𝑙 /ℎ . 

 

Example 4.1 Consider a simply supported beam, where the first four dimensionless bending frequency results 

from BEM and analytical solutions are presented in Table 1.  It should be noted that a poison ratio of 0.3 is used 

to calculated stiffness coefficients 𝐴11 , 𝐵11 and 𝐶11  given in Eq. (7).  The analytical solution for a simply supported 

beam can be obtained prescribing the boundary conditions (𝑁 = 𝑀 = 𝑤 = 0)  at beam ends. Consequently, if 

axial and transverse displacements are represented by 𝑢 = ∑ 𝐴𝑚
∞
1 sin (𝑚𝜋𝑥/𝐿)   and 𝑤 = ∑ 𝐵𝑚

∞
1 sin (𝑚𝜋𝑥/𝐿)  

these boundary conditions are automatically satisfied. Inserting u and w into Eq. (11), results in:  

 

[
 
 
 𝑆1 + 𝐴11

𝑑2

𝑑𝑥2
−𝐵11

𝑑3

𝑑𝑥3

𝐵11
𝑑3

𝑑𝑥3
𝑆1 − 𝐷11

𝑑4

𝑑𝑥4]
 
 
 

{
𝐴𝑚

𝐵𝑚
} = {

0

0
} . (294) 

 

Natural frequencies can be found by setting the determinant of Eq. (34) equal to zero, resulting in: 
 

𝜔1𝑚 = √ϒ1 +
𝑋𝑚

2

2𝐼1
√ϒ2,  𝜔2𝑚 = √ϒ1 −

𝑋𝑚
2

2𝐼1
√ϒ2 , (305) 

 

where 𝑋𝑚 = 𝑚
𝜋

𝐿
 , ϒ1 = (𝐴11 𝑋𝑚

2 + 𝐷11𝑋𝑚
4)/(2𝐼1), and ϒ2 = (𝐴11 − 𝐷𝑋𝑚

2)
2
+4𝐵11

2
𝑋𝑚

2. 

 

Table 1. Nondimensional frequency 𝛺̅ of a simply supported FGM beam with L/h = 20 

Mode  n=0 n=0.2 n=0.5 n=1.0 n=2.0 n=5.0 

1 
Exact 5.748 5.348 4.894 4.424 4.037 3.843 

BEM 5.748 5.348 4.894 4.424 4.037 3.843 

2 
Exact 22.993 21.392 19.572 17.688 16.133 15.361 

BEM 22.993 21.392 19.572 17.688 16.133 15.361 

3 
Exact 51.733 48.127 44.022 39.764 36.250 34.511 

BEM 51.733 48.127 44.022 39.764 36.250 34.511 

4 
Exact 91.970 85.550 78.222 70.608 64.316 61.226 

BEM 91.970 85.550 78.222 70.608 64.316 61.226 

 

From the results in Table 1, it can be seen that both analytical and BEM results are in good agreement. 

 

Example 4.2 Consider FGM beams having different boundary conditions such as S-S and C-F where S, C, F 

denote respectively simply, clamped, and free supported ends.  In addition, the coefficients 𝐴11 , 𝐵11 and 𝐶11  are 

evaluated setting null Poisson ratio in Eq. (7). The fundamental bending frequencies for each boundary conditions 

(B.C.) of the beams are presented in Table 2.  The results from BEM are compared to Differential Transformation 

Method (DTM) given in Ref [18].  It should be noted that a poison ratio of 0.3 is used to calculated stiffness 

coefficients 𝐴11 , 𝐵11 and 𝐶11  given in Eq. (7). 

 

  Table 2. Nondimensional frequency 𝛺̅  of FGM beams with L/h = 20 and various boundary conditions 

B.C.  n=0 n=0.2 n=0.5 n=1.0 n=2.0 n=5.0 

S-S 
DTM 5.483 5.102 4.669 4.221 3.852 3.668 

BEM 5.483 5.102 4.669 4.22 3.851 3.666 

C-F 
DTM 1.953 1.816 1.663 1.504 1.372 1.307 

BEM 1.953 1.816 1.663 1.504 1.372 1.307 

As it can been in Table 2, a good agreement between BEM and DTM responses have achieved. 

According to ref. [18], the DTM results were obtained using 15 terms in the series. 
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Conclusions 

In this paper a boundary element modelling was established to FGM beam problems under the hypotheses of 

the classical laminated beam theory. Only in-plane bending is considered and the results suggest the correctness 

and effectiveness of the BEM formulation here presented for CBT.  
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