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Abstract. This work presents a formulation of the boundary element method with fast multipole expansion applied
to the analysis of anisotropic elastic materials subject to body forces. Integral equations are obtained using the
Somigliana identity. Integrals are divided into near field and far field. Near-field, when the source points and
integration elements are close, are treated as in the standard boundary element method, that is, integrating along
the element and considering the interaction between source points (nodes) and the elements. On the other hand, in
the far field, when the source points and integration elements are far away, the fast multipole method is applied.
In this case, the fundamental solution is expanded in a Laurent series, and the node-to-node interaction is replaced
by a cell-to-cell interaction. Cells are generated by hierarchical decomposition of the domain using the quad-tree
algorithm. Different fast multipole operations are used to take advantage of the hierarchical domain decomposition
and expansions of the fundamental solutions. Influence matrices are never explicitly obtained and the matrix-
vector product is carried out with linear complexity. The linear system is solved by an iterative method. A
preconditioning matrix is used to reduce the number of iterations to obtain a result with a specified accuracy. The
effectiveness and efficiency in solving large-scale problems are discussed. The treatment of problems involving
body forces is taken into account using the modified boundary condition method. This approach entails augmenting
the boundary condition with a specific solution tailored to the problem. Following the solution of the linear
system, the particular solution is subsequently subtracted from both displacements and tractions. Importantly,
this procedural step eliminates the need to generate additional vectors or matrices within the matrix equation. The
formulation presented in this article is based on a representation of complex variables of the integrands, similar
to the formulation previously developed for potential (scalar) problems. Validation is carried out by comparing
the results obtained by the two formulations: the standard boundary element method and the boundary element
method with fast multipole expansion. Numerical examples are presented to demonstrate the efficiency, accuracy,
and potential of the boundary element method with fast multipole expansion to solve large-scale problems, i.e.,
with tens of thousands of degrees of freedom.
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1 Introduction

One of the main drawbacks of the boundary element method is related to the linear algebraic system produced
by the method. The matrix of the system is fully populated and nonsymmetrical due to the interaction between
the source points and the elements. Thus, this method becomes limited to solving problems with a few thousand
degrees of freedom (DOFs), because it requires O(N2) operations to compute the coefficients of the matrix and the
memory required to store is O(N2), where N is the number of DOFs. If the solution of the linear system is found
with the help of direct solvers, such as Gaussian elimination, it is necessary O(N3) operations. This complexity
can be reduced to O(N2) with iterative solvers. However, it is still unsuitable for solving large-scale problems.
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Therefore, these issues have prevented the BEM from solving these types of problem.
This article introduces the Fast Multipole Boundary Element Method (FMBEM) as a robust approach to

addressing 2-D anisotropic elasticity problems subject to body forces (centrifugal loads, gravity, electromagnetic
forces, etc.). To this end, a modified boundary condition approach is adopted to account for body forces. The key
advantage here is the absence of additional integrals within the boundary integral formulation. This circumvents the
need for new multipole expansions, a development that could otherwise undermine the Fast Multipole Boundary
Element Method’s advancement. Given that the explicit assembly of the influence matrix is avoided, an iterative
technique becomes imperative to solve the linear system. The Generalized Minimum Residual (GMRES) method
is used for this purpose. For a comprehensive assessment of accuracy and computational efficiency in relation to the
standard boundary element method (BEM), numerical examples, including one involving large-scale problems, are
scrutinized using both FMBEM and standard BEM approaches. As anticipated, the analysis of the results obtained
demonstrates the superior computational efficiency of FMBEM in comparison to conventional BEM, particularly
for large-scale problems.

2 Fast Multipole BEM formulation for 2-D anisotropic elasticity

The boundary integral equation for 2-D anisotropic problem is given by [1]:

cij(zo)ui(zo) +

∫
Γ

Tij(z, zo)uj(z)dΓ(z) =

∫
Γ

Uij(z, zo)tj(z)dΓ(z) +

∫
Ω

Uij(z, zo)bj(z)dΩ(z) ∀ z ϵ Γ (1)

where the coefficient cij(zo) is given by δij+Aij(z0), in which δij is the Kronecker’s delta. At a smooth boundary
point, cij(zo) = δij/2. Fundamental solutions for displacement Uij(z, zo) and traction Tij(z, zo) are:

Uij(z, zo) = 2ℜ[qi1Aj1 log(zo1 − z1) + qi2Aj2 log(zo2 − z2)] (2)

Tij(z, zo) = 2ℜ
[
gj1(µ1n1 − n2)Ai1

(zo1 − z1)
+

gi2(µ2n1 − n2)Aj2

(zo2 − z2)

]
(3)

where the terms qij , gji and Aij are complex material constants, ℜ stands for the real part of a complex number and
log is the natural logarithm. Constants µk are complex numbers that are the roots of a characteristic polynomial as
given by [1]. The field point z and the source point zo are written in complex form as:

z =

 z1

z2

 =

 x1 + µ1x2

x1 + µ2x2

 (4)

zo =

 zo1

zo2

 =

 xo1 + µ1xo2

xo1 + µ2xo2

 (5)

(x1, x2) is the Cartesian coordinate of the field point (xo1, xo2) is the Cartesian coordinate of the source point.
The fundamental solution given by equation (2) and equation (3) can be rewritten by introducing functions

G(z, zo) and its derivative G′(z, zo). They are given as:

G(zoi , zi) = log(zoi − zi) for i = 1, 2 (6)

Uij(zo, z) = 2ℜ [qi1Aj1G(zo1 , z1) + qi2Aj2G(zo2 , z2)] (7)

G′(zoi , zi) =
∂G(zoi , zi)

∂z
=

1

(zoi − zi)
(8)

Tij(zo, z) = 2ℜ[G′(z01 , z1)gi1(µ1n1 − n2)Aj1 +G′(zo2 , z2)gi2(µ2n1 − n2)Aj2] (9)

Note that G and G′ are very similar to those functions presented by [2] for the Laplace equation. As constant
boundary elements are used, all integrations are performed analytically, as given in [2]. Provided we write the
fundamental solutions in terms of G and G′, the expansion of these fundamental solutions is straight forward,
following the work of [2] on potential scalar problems. In fact, a code similar to that provided in [2] can be utilized
to develop an FMBEM code for anisotropic elastic problems. Only modification of certain functions within the
code is required. In the next section, details of the expansion and multipole operations are given. Note that fast
multipole operations have the same names as those given by [2].
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2.1 Multipole Expansion

The first operation is multipole expansion, where fundamental solutions are written in series form. An inter-
mediate point zc is introduced between the source point z0 and the field point z. This point is near the field point.
So, it is assumed that: |z1 − zc1 | << |zo1 − zc1 | and |z2 − zc2 | << |zo2 − zc2 |. Thus, the function G(zoi , zi) can
be rewritten as

G(zoi , zi) =

∞∑
k=0

Ok(zoi − zci)Ik(zi − zci)

(10)

or
where O(z) and I(z) are given by:

Oo(z) = − log(z) and Ok(z) =
(k − 1)!

zk
, for k ≥ 1 (11)

Ik(z) =
zk

k!
, for k ≥ 0, (12)

Function G′(zo, z) is written with the use of derivatives of functions I(z):

I ′k(z) = Ik−1(z) =
k(zk−1)

k!
for k ≥ 1 and I ′o(z) = 0 (13)

as

G′(zo, z) =

∞∑
k=1

Ok(zo − zc)Ik−1(z − zc) (14)

All other multipole operations (moment-to-momeent, moment-to-local, local-to-local, and local expansion)
are also similar to those presented by [2]. Due to the lack of space, these operations are not shown here. Full
details of them can be found in [3].

3 Treatment of body forces

It is commonly understood that including body forces in the governing equation within the standard boundary
element method leads to the introduction of domain integrals. Many methods exist to avoid the need for domain
discretization [4]. However, to simplify the implementation of fast multipole expansion and reduce computational
overhead, this paper presents a novel approach that eliminates the need for extra integrals beyond those already
present in the standard boundary element method formulation without body forces. This is achieved by decompos-
ing the solutions to the differential equation, ui and ti, into distinctive components: particular solutions, up

i and tpi ,
and homogeneous solutions, uh

i and thi , i.e.:

ui = up
i + uh

i

ti = tpi + thi (15)

The homogeneous solution is the solution of the differential equation without any body force term, i.e.:

Kklu
h
l = 0, k, l = 1, 2 (16)

Boundary conditions of this equation are given by:

ūh
i = ūi − ūp

i on Γui (17)

t̄hi = t̄i − t̄pi on Γti (18)

Therefore, the first step in solving the non-homogeneous problem involves matching the boundary conditions
with those of the corresponding homogeneous problem. This is done by calculating ūh

i and t̄hi using equations (17)
and (18). Next, equation (16) is solved using the FMBEM, yielding uh

i and thi . Finally, ui and ti can be obtained
by subtracting the particular solutions, as outlined in equation (15).
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Maceió, Alagoas, November 11-14, 2024



Fast boundary element method applied to anisotropic materials

3.1 Centrifugal body forces

The body force field in this case is the one due to a uniform rotatory motion. If ω is the constant angular
speed and ρ is the density of the medium, the body force due to centrifugal load is given by:

f(xk) = ρω2xk (19)

The following particular solution for displacement can be considered [5]:

u1 =
1

3
[(b11 + b12)c1 + b11c2]x

3
1+

1

2
b13c2x

2
1x2+[(b11 + b12)c1 + b12c2]x1x

2
2+

1

3

[
(b13 + b23)c1 +

1

2
b23c2

]
x3
2

(20)

u2 =
1

3

[
(b13 + b23)c1 +

1

2
b23c2

]
x3
1+

1

2
b23c2x1x

2
2+[(b22 + b1,2)c1 + b12c2]x

2
1x2+

1

3
[(b22 + b12)c1 + b22)c2]x

3
2

(21)
where

c1 =
4b12 − b33

2(3b11 + 2b12 + 3b22 + b33)
ρω2 (22)

c2 = − b11 + 2b12 + b22
(3b11 + 2b12 + 3b22 + b33

ρω2 (23)

and bij is the flexibility matrix element.

3.2 Gravitational body forces

The body force owing to the gravitational load is given by:

f(xk) = γk (24)

where γ1 = 0 and γ2 = ρg, g is the gravity acceleration.
The following particular solution for displacement can be considered [5]:

u1 = −1

2
γ1b11x

2
1 − γ2b12x1x2 +

1

2
(γ1b12 − γ2b23)x

2
2, (25)

u2 =
1

2
(γ2b12 − γ1b13)x

2
1 − γ1b12x1x2 −

1

2
γ2b22x

2
2. (26)

Particular solutions for stresses can be computed using constitutive equations, considering that strains are
linear combinations of displacement derivatives.

4 Numerical example

4.1 Cantilever beam

This study analyzes a cantilever beam with a rectangular cross-section, where the width is significantly
smaller than the depth, under plane stress conditions. The lenght of the beam is 100 mm and its height is 5
mm. The analysis considers the beam’s own weight as a body force and employs inertial particular integrals and
isoparametric quadratic elements. Figure 1 illustrates the beam’s geometric configuration (dimensions in millime-
ters) and its boundary element discretization pattern, with 88 elements total (4 along each vertical side and 40
along each horizontal side). The material properties are as follows: density = 1.534 × kg/mm3, El = 1.31 × 105

MPa, E2 = 0.13 × 105 MPa, G12 = 0.064 × 105 MPa, and ν12 = 0.038.
The material’s major principal axis is oriented with beam axis (xl), indicating a orthotropic material behavior.
To assess the accuracy of the proposed formulation, this problem was analyzed using various mesh densities

(from 42 to 5166 constant elements). The results were then compared to the analytical solutions presented by [5]
(maximum displacement equals to 0.00068925 mm). Figure 1 illustrates the second coarsest mesh used, consisting
of 84 elements.

Figure 2 demonstrates the convergence of the numerical results towards the analytical solution. It is evident
that the results approach the analytical solution as the mesh refinement increases. The error in the most refined
mesh is 3.9 %.
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Figure 1. Mesh for the beam problem.
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Figure 2. Covergency of the maximum displacement.
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4.2 Turbine propeller

To test the proposed formulation on a large-scale problem, this section analyses turbines with different num-
bers of blades. Figure 3 shows the representation of the turbine blades, with Ri, Rm, and Ro being the internal,
medium, and external radii, respectively, which are provided to build the model. The number of blades is n and
θ = 2π. As a boundary condition, the internal radius is clamped. The load is given only by the centrifugal forces
as a result of rotation.

θ

2n

θ

2n
Ri

Rm

Ro

Figure 3. Turbine geometry.

Based on mesh refinement, the number of tree levels nivT, and them maximum number of boundary ele-
ments per leaf maxEL, it is possible to create a hierarchical tree of the turbine model, as shown in Figure 4. In this
Figure, it is possible to observe that five blades were created, and the total model was discretized by 380 constant
boundary elements. In this case, a maximum of two elements were used per leaf, as can be seen in the zoom
highlighted in the Figure. Therefore, the number of blades, as well as the number of boundary elements, can vary
in the propeller.

Figure 4. Turbine blades inscribed in a hierarchical tree.

The time calculations are shown in Figure 5, revealing that FMBEM initially does not show a significant ad-
vantage over conventional BEM until the boundary elements exceed approximately 1,500. Beyond this threshold,
the efficiency of FMBEM compared to standard BEM becomes evident. In the final scenario, employing 12,160
boundary elements, standard BEM consumed approximately 25,668 seconds, while FMBEM required only 2,632
seconds, resulting in a notable time savings of over 6 hours.

In summary, the computational cost efficiency illustrated in Figure 5 underscores the advantages of employing
FMBEM to solve large-scale 2D anisotropic elasticity problems.

5 Conclusions

This paper presented the development of the Fast Multipole Boundary Element Method (FMBEM) for solving
2-D anisotropic elasticity problems and its application to systems under body forces. The numerical examples
demonstrate the accuracy and efficiency of FMBEM in the resolution of large-scale 2-D anisotropic elasticity
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 Conventional BEM

Figure 5. Computational time for turbine propeller.

problems. The proposed approach for handling centrifugal loads is shown to be highly compatible with FMBEM,
as it avoids the introduction of new integrals into the boundary integral equations. Instead, centrifugal loads are
incorporated by modifying the boundary conditions. The same method can be easily extended to other body force
problems, such as self-weight loads.
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