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Abstract. Studies of Double-beam systems have received significant attention from researchers due to their wide
applications in civil and mechanical engineering. Commonly, finite element method or exact solutions have been
employed to solve double-beam systems, with few others considering buckling of axially loaded double-beam
systems with classical boundary conditions. This paper presents a novel formulation of the Boundary Element
Method (BEM) to determine the buckling load of the double-beam system elastically connected by a Winkler
elastic layer with generalized boundary conditions. Based on the Euler-Bernoulli beam theory, the double-beam
system is composed of two identical beams. This paper provides a detailed discussion of each step involved in the
BEM, including the fundamental solution, boundary integral equations, and algebraic system. Examples consid-
ering different boundary conditions, material properties, and load cases are done and compared to corresponding
analytical solution. The results show excellent agreement between the BEM approach and the analytical solution,
confirming the accuracy and effectiveness of the technique.
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1 Introduction

The composite structures, which consist of multiple components connected by flexible interfaces, have gained
significant attention due to their wide applications in various engineering fields, including civil, aerospace, and
mechanical engineering. Among these structures, the double-beam system (DBS), which consists of two parallel
solids joined by an elastic medium, has attracted considerable interest from the scientific community. Numerous
studies, predominantly conducted over the past few decades, have addressed issues such as free and forced vibration
phenomena [1–10], and bending analysis [11, 12], employing the Euler-Bernoulli beam theory and the Winkler
elastic layer model.

Previous studies have investigated the buckling behavior of double-beam systems [13–16], aiming to deter-
mine the buckling load and understand the behavior of the system, which is introduced due to the elastic layer
between the beams, affecting significantly the stress and strain distributions within the system. Typically, the
Euler-Bernoulli beam theory is used in the DBS model linked by a Winkler layer, and analytical or numerical
methods are used to solve these problems.

The use of the BEM for the study of DBS are limited to [12], since it presented the fundamental solution for
bending analysis of DBS connected by Winkler and Pasternak foundation. The influence of the different boundary
conditions, material properties, and layer parameters in the behavior of the system are discussed. Surprisingly, the
buckling analysis by BEM for DBS connected by the Winkler elastic layer is not available in the literature.

This paper presents a comprehensive buckling analysis of a double-beam system elastically connected by a
Winkler elastic layer using the BEM formulation. All the steps are discussed, including obtaining the fundamental
solution and deriving the integral and algebraic equations for buckling. The study examines the effects of various
parameters, such as the elastic layer’s stiffness and different boundary conditions, on the buckling load of the
system. The results of this analysis provide valuable insights into using the BEM formulation to study connected
structures with elastic connections. The examples included demonstrate the accuracy and applicability of the
technique.
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2 Mathematical model

Consider the double-beam system shown in Figure 1, which consists of two prismatic, homogeneous beams
of the same length L, subjected to axial loads and continuously joined by a Winkler elastic layer with rigidity
K. Based on Euler-Bernoulli beam theory, the effects of shear strain are neglected, i.e., the plane cross-sections,
initially perpendicular to the axis of the beam, remain plane and perpendicular to the neutral axis during the bending
process. Furthermore, the beams can have different mechanical properties and boundary conditions.

Figure 1. Double-beam system elastically connected by Winkler layer.

Following the Euler-Bernoulli beam theory, the equilibrium equation of the DBS with a Winkler layer in-
between is given as follows:

d4wu
dx4

+ F
d2wu
dx2

+ c (wu − wl) = gu/Du, (1)

β
d4wl
dx4

+ χF
d2wl
dx2

− c (wu − wl) = gl/Du, (2)

where wi = wi(x) is the beam’s displacement, with the subscript i = u, l denoting the upper and lower beams,
respectively, Di = EiIi, Ei is the modulus of elasticity, Ii is the moment of inertia of the cross-section, F =
Pu/Du, c = K/Du, β = Dl/Du, and χ = Pl/Pu. Also, the bending moment and effective shear force are
defined as:

Mi = −Di
d2wi
dx2

, (3)

Vi = −Di
d

dx

(
Pi +

d2wi
dx2

)
. (4)

2.1 Fundamental solution

The fundamental problem can be understood as a virtual problem with an infinite domain subject to con-
centrated load in terms of Dirac’s delta, acting in a source point x̂, governed by the same relations as the real
problem. By the direct BEM, the differential governing equation of the fundamental problem will be analogous to
real problem, eqs.(1) and (2), resulting in

Du

 d4/dx+ Fd2/dx2 + c −c

−c βd4/dx4 + χFd2/dx2 − c

 w∗u
u w∗l

u

w∗u
l w∗l

l

 = δ (x, x̂) [I] , (5)

where x is the field point and Dirac’s delta is defined as:

δ (x, x̂) =

 ∞, if x = x̂,

0, if x ̸= x̂.
(6)

Note that the coupled governing equations (5) require additional steps to uncouple and derive their solution.
Therefore, it is assumed that the fundamental solutions to upper and lower beam displacements can be expressed
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in uncoupled form as:

w∗u
u (x, x̂) = Du

(
β
d4ψ

dr4
+ χF

d2ψ

dr2
+ cψ

)
, (7)

w∗u
l (x, x̂) = w∗l

u (x, x̂) = cDu ψ, (8)

w∗l
l (x, x̂) = Du

(
d4ψ

dr4
+ F

d2ψ

dr2
+ cψ

)
, (9)

where r = |x− x̂|, the superscript ∗ denotes the fundamental solution and ψ(r) = ψ is the uncouple fundamental
solution. Replacing eqs.(7) and (8) into eq.(5), and subsequently making a change of variable d2ψ/dr2 = y, the
homogeneous equation can be written as follows:

y

{
y3 + F

(
1 +

χ

β

)
y2 +

[
c

(
1 +

1

β

)
+ F 2χ

β

]
y + Fc

(
χ

β
+

1

β

)}
= 0. (10)

where the root y0 is equal to zero, and the others are given by:

y1 = 3

√
−q
2

+
√
∆+ 3

√
−q
2

−
√
∆− 1

3
F

(
1 +

χ

β

)
, (11)

y2 =
−1

2

[
F

(
1 +

χ

β

)
+ y1

]
+

1

2

√
F 2

(
χ

β
− 1

)2

− y1

[
2F

(
1 +

χ

β

)
+ 3y1

]
− 4c

(
1 +

1

β

)
, (12)

y3 =
−1

2

[
F

(
1 +

χ

β

)
+ y1

]
− 1

2

√
F 2

(
χ

β
− 1

)2

− y1

[
2F

(
1 +

χ

β

)
+ 3y1

]
− 4c

(
1 +

1

β

)
, (13)

where p = 1
3F

2
[
χ
β

(
1− χ

β

)
− 1

]
+c

(
1 + 1

β

)
, q = F

27

{
2F 2

(
1
2 − χ

β

)(
2− χ

β

)(
1 + χ

β

)
+ 9 cβ

[
χ
(
2− 1

β

)
− β + 2

]}
,

and ∆ = (p/3)
3
+ (q/2)

2.
The fundamental solution is dependent on the nature of the roots, and the proposed solutions can be seen as

follows:

Case I. For ∆ < 0, the root y1 is negative, while y2, y3 are complex conjugate roots. Thus, the proposed solution
is expressed as follows:

ψ(r) = −αbs
(
s2 + y21 − 2ay1

)
r + α

bs3√
−y1

sin
(
r
√
−y1

)
+ αe−pr

[
y1q

(
4mp2 + s2 + ny1

)
cos (qr) + y1p

(
4nq2 + s2 −my1

)
sin (qr)

]
, (14)

where α =
[
2D2

uβs
3by1

(
s2 + y21 − 3ay1

)]−1
, a = p2 − q2, b = 2pq, m = p2 − 3q2, n = q2 − 3p2, s = p2 + q2,

p = Re
(√
y2
)

and q = Im
(√
y2
)
.

Case II. For ∆ < 0, the roots are distinct, and negative. Thus, the proposed solution is expressed as follows:

ψ(r) = − α

y1y2y3
(y1 − y2) (y1 − y3) (y2 − y3) r + α

y2 − y3
y1
√
−y1

sin
(
r
√
−y1

)
+ α

y3 − y1
y2
√
−y2

sin
(
r
√
−y2

)
+ α

y1 − y2
y3
√
−y3

sin
(
r
√
−y3

)
, (15)

where α =
[
2D2

uβ (y1 − y2) (y1 − y3) (y2 − y3)
]−1

.

Case III. For ∆ = 0, the roots are negative, but y2 and y3 are identical. Thus, the proposed solution is expressed
as follows:

ψ(r) = 2αy2
√
−y1 (y1 − y2) (3y1 − 7y2) r − 14αy32sin

(
r
√
−y1

)
+ 2α (3y1 − 10y2) y1

√
−y1

√
−y2sin

(
r
√
−y2

)
− α (y1 − y2) y1y2

√
−y1

√
−y2r2sin

(
r
√
−y2

)
, (16)

where α = −
[
4D2

uβy1y
3
2

√
−y1 (y1 − y2) (7y1 − 11y2)

]−1
.

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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The explicit forms of the fundamental solutions of displacements can be found by substituting eqs.(14), (15),
or (16) into eqs.(7) to (9). In addition, the fundamental solutions for bending moments and shear forces are
analogous to eqs.(3) and (4), as shown below:

M∗u
u = −D2

u

[
β
d6ψ

dr6
+ χF

d4ψ

dr4
+ c

d2ψ

dr2

]
,M∗l

u = −cD2
u

d2ψ

dr2
,M∗u

l = −βcD2
u

d2ψ

dr2
, (17)

M∗l
l = −βD2

u

[
d6ψ

dr6
+ F

d4ψ

dr4
+ c

d2ψ

dr2

]
, (18)

V ∗u
u = −D2

u

d

dr

[
β
d6ψ

dr6
+ F (β + χ)

d4ψ

dr4
+
(
χF 2 + c

) d2ψ
dr2

+ Fcψ

]
sgn (x, x̂) , (19)

V ∗l
u = −cD2

u

d

dr

(
Fψ +

d2ψ

dr2

)
sgn (x, x̂) , V ∗u

l = −cD2
u

d

dr

(
χFψ + β

d2ψ

dr2

)
sgn (x, x̂) , (20)

V ∗l
l = −D2

u

d

dr

[
β
d6ψ

dr6
+ F (β + χ)

d4ψ

dr4
+
(
χF 2 + βc

) d2ψ
dr2

+ χFcψ

]
sgn (x, x̂) , (21)

where the signum function is given by:

sgn (x, x̂) =

 1, if x > x̂

−1, if x < x̂.
(22)

Furthermore, the derivative forms of displacements and internal forces are necessary to complete the defini-
tion of integral equations. The source point derivative is defined as follows:

dn

dx̂n
(·) = − dn

dxn
(·) = − dn

drn
(·) sgn (x, x̂) . (23)

Higher-order derivatives of Dirac’s delta function are avoided.

2.2 Integral and algebraic equations

The solution to the problem can be derived by transforming the differential equilibrium equations into equiv-
alent integral equations. By applying the method of weighted residuals to eqs.(1) and (2), where the weighted
functions are the fundamental solutions presented in eqs.(7) to (9), the following expressions are obtained:∫

Ω

{[
d4wu
dx4

+ F
d2wu
dx2

+ c (wu − wl)

]
w∗u
u +

[
β
d4w2

dx4
+ χF

d2w2

dx2
− c (wu − wl)

]
w∗u
l

}
dΩ = 0, (24)∫

Ω

{[
d4wu
dx4

+ F
d2wu
dx2

+ c (wu − wl)

]
w∗l
u +

[
β
d4wl
dx4

+ χF
d2wl
dx2

− c (wu − wl)

]
w∗l
l

}
dΩ = 0. (25)

After performing integration by parts and applying convenient manipulations, the eqs.(24) and (25) are trans-
formed into:

wu(x̂) + [V ∗u
u wu]

L
0 − [M∗u

u wu,x]
L
0 + [V ∗u

l wl]
L
0 − [M∗u

l wl,x]
L
0 = [Vuw

∗u
u ]

L
0

−
[
Muw

∗u
u,x

]L
0
+ [Vlw

∗u
l ]

L
0 −

[
Mlw

∗u
l,x

]L
0
, (26)

wl(x̂) +
[
V ∗l
u wu

]L
0
−
[
M∗l
u wu,x

]L
0
+

[
V ∗l
l wl

]L
0
−

[
M∗l
l wl,x

]L
0
=

[
Vuw

∗l
u

]L
0

−
[
Muw

∗l
u,x

]L
0
+
[
Vlw

∗l
l

]L
0
−

[
Mlw

∗l
l,x

]L
0
, (27)

where for the sake of convenience, the derivatives are denoted here by subscripts preceded by a comma.
Equations (26) and (27) contain four unknowns at the boundary: wu, wl, wu,x, and wl,x. However, only two

integral equations have been obtained, necessitating the derivation of two more equations. Thus, differentiating
eq.(26) with respect to x̂ results in the following expression:

wu,x̂(x̂) +
[
V ∗u
u,x̂wu

]L
0
−
[
M∗u
u,x̂wu,x

]L
0
+
[
V ∗u
l,x̂wl

]L
0
−

[
M∗u
l,x̂wl,x

]L
0
=

[
Vuw

∗u
u,x̂

]L
0

−
[
Muw

∗u
u,xx̂

]L
0
+
[
Vlw

∗u
l,x̂

]L
0
−

[
Mlw

∗u
l,xx̂

]L
0

(28)
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The derivative of eq.(27) with respect to x̂ is given by:

wl,x̂(x̂) +
[
V ∗l
u,x̂wu

]L
0
−
[
M∗l
u,x̂wu,x

]L
0
+

[
V ∗l
l,x̂wl

]L
0
−

[
M∗l
l,x̂wl,x

]L
0
=

[
Vuw

∗l
u,x̂

]L
0

−
[
Muw

∗l
u,xx̂

]L
0
+
[
Vlw

∗l
l,x̂

]L
0
−
[
Mlw

∗l
l,xx̂

]L
0

(29)

The integral equations (26) to (29) permits the evaluation of the displacements and slopes at a point in the
interior of the DBS, if the values of the displacements wi, slopes wi,x, the bending moments Mi and effective
shear force Vi of the upper and lower beams on the boundary are known. However, for the BEM formulation it
is necessary derived the correspondent expressions to determine this quantities on the boundary. These equiva-
lent integral equations to boundary values are derived collocating the source at the edges of the DBS, meaning
x̂ = limξ→0(0 + ξ) and x̂ = limξ→0(L − ξ). Thus, the transformation of integral equations into an algebraic
representation is done by discretization in boundary elements, resulting in the matrix equation:

{u}+ [H] {u} = [G] {p}+ {f} , (30)

where [H] and [G] are influence matrices, {f} is the load vector, {u} is the displacement vector and {p} is the
forces vector on the boundary. The boundary vectors u and p are done as follows:

{u} =
{
wu(0) wu,x(0) wl(0) wl,x(0) wu(L) wu,x(L) wl(L) wl,x(L)

}T
, (31)

{p} =
{
Vu(0) Mu(0) Vl(0) Ml(0) Vu(L) Mu(L) Vl(L) Ml(L)

}T
, (32)

The influence matrix [G] in eq.(30) can be written as follows:

[G] =

 G11 G12

G21 G22

 , [Q(r, S)] = Du


L1ψ(r) − d

drL1ψ(r)S cψ(r) −c ddrψ(r)S

− d
drL1ψ(r)S

d2

dr2L1ψ(r) −c ddrψ(r)S c d
2

dr2ψ(r)

cψ(r) −c ddrψ(r)S L2ψ(r) − d
drL2ψ(r)S

−c ddrψ(r)S c d
2

dr2ψ(r) − d
drL2ψ(r)S

d2

dr2L2ψ(r)

 , (33)

where the matrix G11 = −Q(0,−1), G12 = Q(L, 1), G21 = −Q(L,−1), G22 = Q(0, 1), and the operators
L1 = βd4 (·) /dr4 + χFd2 (·) /dr2 + c (·), and L2 = d4 (·) /dr4 + Fd2 (·) /dr2 + c (·).

Also the influence matrix [H] in eq.(30) is given by:

[H] =

 H11 H12

H21 H22

 , [N(r, S)] = −D2
u


L3ψ(r)S −L4ψ(r) cL6ψ(r)S −cβ d

2ψ
dr2 (r)

− d
drL3ψ(r)

d
drL4ψ(r)S −c ddrL6ψ(r) cβ d

3ψ
dr3 (r)S

cL5ψ(r)S −cd
2ψ
dr2 (r) L7ψ(r)S −βL8ψ(r)

−c ddrL5ψ(r) cd
3ψ
dr3 (r)S − d

drL7ψ(r) β d
drL8ψ(r)S

 , (34)

where H11 = −N(0,−1), H12 = N(L, 1), H21 = −N(L,−1), H22 = N(0, 1), and the operators L3 (·) =
βd7 (·) /dr7+F (β + χ) d5 (·) /dr5+

(
c+ F 2χ

)
d3 (·) /dr3+Fcd (·) /dr,L4 (·) = βd6 (·) /dr6+χFd4 (·) /dr4+

cd2 (·) /dr2, L5 (·) = d3 (·) /dr3 + Fd (·) /dr, L6 (·) = βd3 (·) /dr3 + χFd (·) /dr, L7 (·) = βd7 (·) /dr7 +
F (β + χ) d5 (·) /dr5+

(
βc+ F 2χ

)
d3 (·) /dr3+χFcd (·) /dr, L8 (·) = d6 (·) /dr6+Fd4 (·) /dr4+cd2 (·) /dr2.

After applying the boundary conditions, it is necessary to study the determinant behavior of the matrix [H],
i.e., the instabilities are characterized by the nullity of the matrix.

3 Numerical examples

3.1 Example 1

Consider the structural model analyzed by Zhang et al. [17], where the two beams have the same bending
stiffness and cross-sectional area, and simply supported ends. The results are presents in terms of the ratio Fcr/Pn,
where Pn = EI (nπ/L)

2. The influence of the ratio χ of the axial load Fl to Fu on buckling load Fcr for the first
three modes n can be seen in Figure 2(a). The critical buckling load is also dependent on the stiffness beam ratio
β and modulus K of the Winkler elastic layer, as can be see in Figures 2(b) and 3, respectively.

It can be seen the accuracy of the technique and solutions proposed in this paper when compared with refer-
ence values.
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(a) (b)

Figure 2. Buckling load with stiffness modulus K = K0 for the (a) first three modes (with β = 1) and (b) varying
β.

(a) (b)

Figure 3. Effect of the elastic layer stiffness on the buckling load, where (a) β = 1, and (b) β = 100.

3.2 Example 2

Consider the double-beam system given by Ref.[16] with ends under different boundary conditions, defined
as: S – simply supported; C – clamped; and F – free ends. The following non-dimensional parameters are defined:

c = cL4, F = FL2 (35)

The buckling loads obtained by BEM are compared with the three cases SS-SS, CS-CS, and CS-SS, as can be
seen in Table 1. Both results are very close but not equal, as expected, since the reference paper considers the
Timoshenko beam theory in the DBS model.

Table 1. Comparison of the first two buckling loads for different boundary conditions, where χ = 1, β = 1 and
c = 25.

SS-SS CS-CS CS-SS

n BEM Ref.[16] BEM Ref. [16] BEM Ref.[16]

1 9.8696 9.6256 20.1907 19.1019 11.9194 11.6295

2 14.9357 14.6916 24.2852 23.2053 22.7066 21.6647

The results shows the versatility of the BEM solution, having a good performance even if having different
properties, boundary conditions, and axial load cases.
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4 Conclusions

In this paper, a Boundary Element Method formulation for the buckling analysis of a double-beam system
elastically connected by a Winkler elastic layer is presented. The fundamental solution is proposed for each root
nature case, and all the steps to obtain the integral equations are discussed. In addition, the algebraic equation
is developed, and the influence matrices for the four-node double-beam boundary element with eight degrees of
freedom are derived and explicitly shown. The validity of the BEM formulation is verified through examples
considering different boundary conditions, geometrical and mechanical properties, and it is compared with those
solutions available in the literature. The present BEM formulation is very attractive due to its versatility and
efficiency in solving the buckling DBS problem with good agreement.
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