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Abstract. In structural engineering, there is a growing trend towards using elements that better conform to 

geometric characteristics. This is particularly true when leveraging surface (or line, in 2D cases) generation in 

CAD environments, directly benefiting from more precise geometry. In this context, the need for Isogeometric 

elements arises. Through their utilization, the analysis of more complex stress and strain distributions is conducted 

with greater accuracy. This paper presents an alternative for analyzing the structural behavior of elastostatic 

structural cases through 2D modeling, employing an approximate method with Isogeometric elements. A 

computational implementation of the Boundary Element Method (BEM) was developed using the Python 

programming language. The "2D BEM" code was adapted, employing Kelvin's fundamental solution with the use 

of continuous and discontinuous linear elements, as well as higher-order elements, for more accurate boundary 

discretization. The formulation of BEM thus enables the modeling of the domain, in this case, the analysis of 2D 

bodies in the presence of mechanical damage, with iterative monitoring. The behavior is assessed through the 

displacements obtained for the boundary and internal points, as well as the stresses, conveniently evaluated in 

graphical representations. Applications are presented to test the implemented modeling and to provide an 

alternative for analyzing an important area within structural systems in civil construction projects, among others. 

Keywords: Isogeometric elements; Python; discretization. 

1  Introduction 

In the field of Engineering, it is common to encounter scenarios that require the application of differential 

equations for their solution. However, it is recurrent to find equations of this nature whose analytical solution is 

not feasible. In this manner, the application of numerical methods emerges as an essential alternative nowadays. 

Thus, Bacarji [1] states that the Boundary Element Method (BEM), which originated from Betti [2] with the use 

of equivalent integral equations for problem solving, replaces the integral equations by discretized integral 

equations, in which unknowns of the boundary are used in a finite set of nodes. 

As discussed by Ribeiro and Vicentini [3], the BEM demonstrates remarkable advantages in situations that 

involve infinite extension media or that demand a frequent update of the domain, illustrated exemplarily by the 

analysis of crack propagation. However, the authors point out that the method works with a less intuitive 

formulation, when compared to other methods, such as the finite element method. 

Isogeometric analysis, according to Peixoto [4], is an advanced numerical method whose use has been gaining 

increasing interest in Engineering. The method was developed by Hughes et al. [5] and proposes a differentiated 

and more sophisticated alternative to the traditional method, based on the use of NURBS (Non-Uniform Rational 

B-Splines) curves for problem representation. Isogeometric analysis improves computational simulation by 

minimizing mesh approximation errors, as it preserves the exact geometry of the model throughout the process. 
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This is possible through to the use of the same class of functions to represent both the geometry and the problem 

variables. 

2  Boundary Elements Method Linear Formulation  

2.1 Boundary integral equations  

It is necessary to use an integral form representation for applying the boundary element method to a given 

body. This representation can be achieved using weighted residual methods. 

Lima Junior [6] adopted the methodology proposed by Somigliana [7], based on Betti's reciprocity theorem, 

which is grounded in the principle of conservation of energy, resulting in the following expression: 

𝑢𝑖(𝑠)  =  ∫
𝛤

𝑝𝑘 (𝑄)𝑢𝑖𝑘
∗ (𝑠, 𝑄)𝑑𝛤 − ∫

𝛤

𝑝𝑘 (𝑠, 𝑄)𝑢𝑘 (𝑄)𝑑𝛤 + ∫
𝛺

𝑏𝑘 (𝑞)𝑢𝑖𝑘
∗ (𝑠, 𝑞)𝑑𝛺,  

 

(1) 

defining the displacement field at a point 𝑠 within the domain, based on the displacements and forces measured at 

boundary points. 

2.2 Boundary Elements Method  

The formulation based on boundary integral equations, which were developed from Betti's reciprocity 

theorem proposed by Somigliana [7], was presented. This allows the analysis of two-dimensional, isotropic, and 

homogeneous elastic solids. For practical use, it is necessary to transform the boundary integral formulation into 

algebraic equations, which consolidates its discretized form, resulting in a linear system that will be solved after 

applying the boundary conditions of the problem. 

The representation of the boundary in a finite dimension is achieved through the definition of nodes that 

delimit the so-called boundary elements. This boundary parametrization can be exact or approximate, depending 

on the geometry of the domain under analysis and the type of parametrization adopted. Figure 1 illustrates these 

two situations using linear elements. Furthermore, the geometric characterization of the element should 

approximate the variables of interest in the problem, based on approximating functions and their nodal values at 

specific points. Polynomial functions are commonly used. 

 

Figure 1. Boundary discretization: adjusting the elements to the shape 

Equation (1) can be rewritten according to eq. (2), as a function of nodal values, defined in the discretization 

of the boundary only, ignoring the part of the domain forces. 

 

 . (2) 

 

In fact, eq. (2) can be reduced to the form of eq. (3), in matrices and vectors: 
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Determining the displacements and forces for each node in both directions leads to the global matrices G and 

H, which contain the core of the p*
lk and u*

lk integrals. With the above matrices and the vector of prescribed values, 

a system of linear equations with unknowns and prescribed variables is formed. When solving the linear system, 

the unknown values of the problem boundary are determined, with which displacements and stresses at internal 

points in the body can be determined. Applying the boundary conditions gives the system of linear equations as 

shown in eq. (4), 

 

AX = B. (4) 

 

The system of linear equations, eq. (4), provides the unknown values of surface forces and displacements at 

points along the boundary. 

2.3 Fundamental solution  

Considering a fundamental problem in the infinite domain Ω* subjected to a unit load applied at a given point 

s, referred to as a source point along direction i, it is possible to characterize the fundamental problem. Assuming 

a solid body in linear elastic regime within a domain Ω bounded by the boundary, and imposing the equilibrium 

of an infinitesimal representative element at any point of the solid, the equilibrium reactions are condensed as 

written below, eq.(5), 

𝜎𝑘𝑗,𝑗(𝑞) + 𝑏𝑖𝑘(𝑞)  =  0, (5) 

 

where 𝜎𝑘𝑗(𝑞) corresponds to the stress tensor component and 𝑏𝑘(𝑞) o the component of the volume force vector 

acting on the body. 

Thus, with the equilibrium reaction (1), it is possible to represent the unit loading by substituting the term 

bk(q) with a Dirac delta distribution, weighted by a Kronecker delta, relating directions i and k. 

Thus, the equilibrium equation (1) can be written as follows, 

 

𝜎∗
𝑖𝑘𝑗,𝑗  (𝑠, 𝑞)  + 𝛿(𝑠, 𝑞)𝛿𝑖𝑘  =  0, (6) 

 

where 𝜎*(s,q) corresponds to the stress tensor in the fundamental state. The presence of an asterisk (*) in quantities 

refers to the fundamental state. 

In the formulation used in this work, the fundamental Kelvin solution is used, which is considered to be the 

most widespread and widely used in technical circles. The expressions for displacements and surface forces for 

the 2D Kelvin problem are shown in eq. (7) and (8), respectively. 

 

𝑢𝑖𝑗
∗ =

1

8𝜋𝐺(1−𝜐)
[(3 − 4𝜐) 𝑙𝑛 (

1

𝑟
) 𝛿𝑖𝑗 + 𝑟,𝑖𝑟,𝑗]; 

 

(7) 

𝑝𝑖𝑗
∗ = −

1

4𝜋(1−𝜐)𝑟
{

𝜕𝑟

𝜕𝑛
[(1 − 2𝜐)𝛿𝑖𝑗 + 2𝑟,𝑖𝑟,𝑗] + (1 − 2𝜐)(𝑛𝑖𝑟,𝑗 − 𝑛𝑗𝑟,𝑖)}, 

 

(8) 

 

where G is the transverse modulus of elasticity and υ is Poisson's ratio. In addition, 𝛿𝑖𝑗 is Kronecker's delta 

function, 𝑟 =  √𝑟𝑖 ∗ 𝑟𝑖 ;    𝑟𝑖 = 𝑋𝑖(𝑞) − 𝑋𝑖(𝑠);    𝑟,𝑖 =  
𝑟𝑖

𝑟
 . 
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3  Isogeometric Formulation 
 

The isogeometric formulation of the Boundary Element Method (BEM) combines geometric modeling 

concepts (usually used in CAD) with numerical methods to solve engineering and applied science problems. 

Isogeometric formulation (IGA) was proposed to unify the representation of geometry and the discretization 

of domains used in numerical analyses. Traditionally, numerical methods use simple shape functions, such as 

polynomials, to approximate both the geometry and the solutions. However, these geometric approximations do 

not correspond exactly to the original geometry, which can introduce errors. IGA uses more sophisticated shape 

functions derived from CAD geometric representations (Kapturczak et al. [8]), such as NURBS (Non-Uniform 

Rational B-Splines). These functions make it possible to represent geometry accurately and also to approximate 

the solutions of differential equations. This is particularly advantageous when dealing with problems involving 

complex geometry. 

NURBS (Non-Uniform Rational B-Splines) are a flexible mathematical representation for curves and 

surfaces that allow you to accurately represent geometric shapes, from simple curves to complex geometries, 

including circles, spheres and organic surfaces (Loyola [9]). Second-degree NURBS make it possible to represent 

smooth curves and arcs of circles with great precision, and to represent segments of circles, which facilitates the 

analysis of symmetrical domains. Second-degree NURBS strike a balance between geometric precision and 

computational simplicity, making them ideal for many engineering applications. A second-degree NURBS is 

defined by the following components: 

- Control Points (Pi): these are the points that define the shape of the curve. Each segment of the curve is 

influenced by three control points; 

- Node vector 𝑈: the node vector 𝑈 = {𝑢0, 𝑢1, … , 𝑢𝑚} defines the parameterization of the curve. The 

vector of nodes must have 𝑚 = 𝑛 + 𝑝 + 1, where n is the number of control points and p is the degree 

of the curve; 

- Weights 𝑤𝑖: the weights control the influence of each control point on the curve. Different weights allow 

for the exact representation of rational shapes, such as arcs of a circle. 

The second-degree NURBS curve 𝐶(𝑢) can be determined using the equation (9): 

 

𝐶(𝑢) =
∑ 𝑁𝑖,2(𝑢)𝑤𝑖𝑃𝑖

2
𝑖=0

∑ 𝑁𝑖,2(𝑢)𝑤𝑖
2
𝑖=0

 
(9) 

 

where 𝑢 ∈ [0,1], and B-Spline basis functions are: 

 

𝑁𝑖,0(𝑢) = {
1, 𝑖𝑓 𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1                 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              
 

(10) 

 

𝑁𝑖,1(𝑢) =
𝑢 − 𝑢𝑖

𝑢𝑖+1 − 𝑢𝑖

𝑁𝑖,0(𝑢) +
𝑢𝑖+2 − 𝑢

𝑢𝑖+2 − 𝑢𝑖+1

𝑁𝑖+1,0(𝑢) (11) 

 

𝑁𝑖,2(𝑢) =
𝑢 − 𝑢𝑖

𝑢𝑖+2 − 𝑢𝑖

𝑁𝑖,1(𝑢) +
𝑢𝑖+3 − 𝑢

𝑢𝑖+3 − 𝑢𝑖+1

𝑁𝑖+1,1(𝑢) (12) 

 

Applications processed in this work have a circular boundary, as well as in the work of SIMPSON [11]. In 

view of these statements, therefore, the expression C(u) can be presented for a radius R, with 3 (three) control 

points and a representative arch segment for the first trigonometric quadrant (eq.(13)): 

 

𝐶(𝑢) = (
𝑅(1 − 𝑢)2 + 𝑅𝑢(1 − 𝑢)

(1 − 𝑢)2√2𝑢(1 − 𝑢) + 𝑢2
|

𝑅𝑢2 + 𝑅𝑢(1 − 𝑢)2

(1 − 𝑢)2√2𝑢(1 − 𝑢) + 𝑢2
) 

 

(13) 
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4  Applications 
 

4.1 Circular Hole 

 

The first example involves a circular hole with a radius of 10 (Kapturczak et al. [10]), as shown in Fig. 2. 

Within the cylinder, it is defined in a plane stress state, with an applied force p = 15. The material parameters are: 

E = 21 and ν = 0.1. 

 

 
Figure 2: Circular Hole with internal pressure. 

Source: Authors. 

In this context, the example was initially implemented using the linear BEM formulation program, with 

64 boundary nodes used for the calculations. The following Tab. 1 presents a comparative analysis of the results 

from the analytical solution and those obtained from the program developed in this study. 

Table 1. Results of stresses at internal points for comparison with other works (Y=0, X=12, 15 and 20) 

X Analytical BEM ([10]) MEC 2D ISOMEC 2D 

 𝜎𝑥 𝜎𝑦 𝜎𝑥 𝜎𝑦 𝜎𝑥 𝜎𝑦 𝜎1 𝜎2 𝜎𝑥 𝜎𝑦 

12 -10.417 10.417 -10.22 10.268 -10.268 10.268 -10.268 10.273 -10.414 10.414 

15 -6.667 6.667 -6.525 6.651 -6.651 6.651 -6.667 6.528 -6.665 6.665 

20 -3.750 3.750 -3.670 3.702 -3.702 3.702 -3.702 3.702 -3.749 3.749 

 

 
Figure 3: Circular Hole - boundary points, internal points and surface forces in x and y. 

Source: Authors, 2024. 

 
Figure 4: Graphs of principal stress distribution, 𝜎1 and 𝜎2. 

Source: Authors, 2024. 
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4.2 Multiply Connected Domain 

 

The second example is a Lamé problem with a = 10 cm and b = 25 cm (Kapturczak et al. [10]), as shown in 

Fig. 5. Inside the cylindrical tube, it is subjected to an internal hydrostatic pressure of p = 100 MPa, in a plane 

stress state. The material parameters are E = 2 x 105 MPa e v = 0.25. 

 
Figure 5: Cylindrical tube with internal pressure. 

Source: Authors 

 

In this context, the example was initially implemented using the linear BEM formulation program, 

employing 64 boundary nodes for the calculations. The following Tab. 3 presents a comparison of the results from 

the analytical solution, the reference article, and the program developed in this study. 

Table 3. Results of stresses at internal points for comparison with other works (X=12, 18, 20 and 24; Y=0). 

X Analytical NURBS ([10]) MEC 2D 

 𝜎𝑥 𝜎𝑦 𝜎𝑥 𝜎𝑦 𝜎𝑥 𝜎𝑦 

12 -63.624 101.720 -63.681 101.681 -63.782 99.423 

18 -17.695 55.791 -17.706 55.775 -18.425 54.096 

20 -10.700 48.810 -10.724 48.798 -11.536 47.200 

24 -1.620 39.716 -1.569 39.695 -1.606 38.214 

Source: Authors, 2024 

        
(a)                                 (b) 

Figure 6: (a) Boundary points, internal points and surface forces in x and y; (b) Mesh of internal points 

for graphics. 

Source: Authors 

     

 
Figure 7: Graphs of principal stress distribution, 𝜎1 and 𝜎2. 

Source: Authors, 2024 
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5  Conclusions 

This paper presented an isogeometric implementation of BEM using NURBS equations. The results showed 

more agreement than those obtained with the traditional BEM formulation. It also showed positive results with the 

use of (discontinuous) linear elements.  

However, the work involved in determining the NURBS basis functions in an application is significantly 

more than that required for linear discretization. In the examples processed, the analytical solutions are known, 

making it easier to perceive the convergence of the results. Their circular boundaries made it easier to obtain 

functions appropriate to the geometry. Other examples not so well behaved in their geometry need to be further 

investigated by this work to examine the suitability of the formulation for these cases as well. This will be future 

work. 
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