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Abstract. A full coupled multi-scale modelling using the Boundary Element Method for analysing the 2D problem 
of stretched plates composed of heterogeneous materials, where dissipative phenomena can be considered, is 
presented. Both the macro-scale and the micro-scale are modelled by BEM formulations where the consistent 
tangent operator (CTO) is used to achieve the equilibrium of the iterative procedures. The equilibrium equation of 
the plate (macro-continuum) is written in terms of in-plane strains while the equilibrium problem of the 
microstructure, which is defined by the RVE (Representative Volume Element), is solved in terms of 
displacements fluctuations. In this kind of modelling, the mechanical behaviour of the material is governed by the 
homogenized response of the RVE, obtained after solving its equilibrium problem. As this kind of modelling is 
expensive computationally, it is important to investigate other numerical methods to have faster formulations, but 
which are still accurate. To validate the presented model, the numerical results are compared to the ones where the 
material microstructure (RVE) is modelled by the FEM. 
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1  Introduction 

 In this work, the material microstructure is modelled by the RVE, where the materials properties of each 
phase of the microstructure are defined accordingly to the material studied. Therefore, the constitutive response of 
a particular point of the macro-continuum is defined by the homogenized response of the RVE that represents that 
point. Both the 2D-dimensional problem (macro-continuum problem, whose formulation was developed by 
Fernandes and Souza Neto in [1]) and the RVE problem (material microstructure, whose formulation was 
developed by Fernandes et al in [2]) are modelled by Boundary Element formulations, being the results compared 
to a formulation where the RVE is modelled considering the Finite Element Method, developed by Fernandes et 
al in [3]. 

To model structures at different scales is important to better represent the mechanical behaviour of 
heterogeneous materials, as we can see in the works Fernandes et al [2] and [3], Peric et al [4], Somer et al [5], 
Silva et al [6], Pituba et al [7] and Fernandes et al [8], where the mechanical behaviour of different kind of materials 
have been modelled using a multi-scale framework. In many situations of traditional one scale formulations of 
structures, sophisticate constitutive models must be used to obtain better results, while in multi-scale modelling 
good results are obtained using simple constitutive models at the micro-scale. Besides, the dissipative phenomena 
that occur at microstructure level can be better modelled if a multi-scale modelling is considered because in this 
case, we can treat the different dissipative phenomena of the microstructure separately as well as modelling the 
mechanical behaviour of the different phases of the microstructure separately. On the other hand, in a one scale 
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analysis of a structure (macro-continuum), the material behaviour is governed by a constitutive model that 
considers the material to be homogeneous at macrostructure level. 

Most of the materials have a heterogeneous microstructure at the microscale. In the present work, the 
heterogeneity at microscale is defined by different volume fraction and sizes of the inclusions and of the voids as 
well as by the different material properties of the microstructure phases. The numerical examples are developed 
in the context of Metal Matrix Composites (MMC) which are metallic materials reinforced by more rigid metal 
inclusions or in the context of porous metal materials. 

2  Equilibrium Problem for the Macro-continuum 

Let us consider a flat plate of thickness t, external boundary Γ and domain Ω which supports only loads acting 
in the x1 and x2directions over the plate middle surface and the case of small strains. The following values are 

defined on the plate surface: in-plane tractions ( np  and sp ) and in-plane displacements ( nu  and su ), with n and 
s referring to the boundary normal and tangential directions, respectively.  As we deal with dissipative phenomena, 
all variables are expressed in their time derivatives, i.e., dt/dx)x(   and the total strain is split into its elastic 

(
e
ij ) and inelastic (

0
ij ) parts. In this case, the inelastic membrane force rate 0

ijN , which in the present paper are 

represented by the plastic forces, is defined as: 

0 e
ij ij ijN N N      i, j = 1, 2                                          (1) 

where the forces ijN  are obtained from the stress vector that satisfies the constitutive model, which in the present 

paper, corresponds to the RVE homogenized response and the forces 
e
ijN  can be written in terms of the total strain 

ij  or in terms of the total displacements derivatives, by applying the Hooke’s law. 

From Betti’s reciprocal theorem we can obtain the integral representation for the plate stretching problem 
(see more details in in the work developed by Fernandes and Souza Neto [1]), which after integrating by parts 
leads to the well-known representation of in-plane displacements: 

     * *
i i n in s isK q u q u p u p d



          
b

dbubudpupu s
*
isn

*
ins

*
isn

*
in



   

 * 0
ijk jkN d



                         k, i, j = 1,2                 (2) 

where q is the source point, the values of the fundamental problem are denoted by the superscript *; the subscript 
i is the direction of the fundamental load; Ωb is the plate loaded area; Ki(q) is the free term, being K(q)=1 and 
K(q)=1 /2 for internal and boundary points, respectively.  

When dissipative phenomena are considered, the load must be divided into increments, being the equilibrium 
equation checked for each load increment. For that, we consider that a variable over the time step Δt is given by: 

1nn1n ataaa    , being n the increment number. Thus, in what follows we will write the values in terms of 

their increments instead of their rates. To solve the problem, we need also to write the integral representation for 

the forces
e
ijN , obtained from the integral representation for rotations and Hookes’s law. And to obtain the integral 

representation for rotations, we must only differentiate eq. (2). 
To obtain the algebraic equations, we adopt geometrically linear elements where the displacements and 

tractions are approximated by quadratic shape functions. Over the plate domain we adopt triangular cells where 
the inelastic force increments 0N  are approximated by linear shape functions. After writing two in-plane 

displacements equations at each boundary node of the plate (macro-continuum), the set of equations is obtained, 
which after applying the boundary conditions to the plate, can be written as: 

0
NX L R N                                                                            (3) 

where ΔX is the unknown vector on the plate boundary; the vector ΔL represents the elastic solution for the 
boundary values; RN=A-1E express the corrections due to the inelastic force increment (ΔN0), being the matrix E 
obtained by integrating the cells and the matrix A obtained after imposing the boundary conditions to the set of 
equations. 
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Three algebraic equations of elastic force increments ( )e BEMN are written at each cell node of the macro-

continuum, resulting into (see more details in the work developed by Fernandes and Souza Neto [1]): 

( ) 0e BEM
N NN K S N                                                                   (4) 

where ΔKN is the elastic solution for the membrane forces of the macro-continuum, the matrix SN expresses the 
corrections due to the inelastic force increment ΔN0.  

The equilibrium of the plate, for a load increment n, is achieved when the following equilibrium equation is 
verified: 

   ( )2 0N n N n N n N N n n nR K C S C N N                                             (5) 

where CN is the matrix that contains the elastic matrices of all cell nodes; for a particular node k, ( )kN  is 
computed from the homogenized stress vector of the RVE. The plate equilibrium is achieved when the strain vector 
(Δε) that satisfies eq. (5) is found. For that, an iterative procedure must be considered where additive corrections 

1i
n    is computed as follows: 

   
1

1
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  





  
    

   

i
N ni i

n N ni
n

R
R                                                     (6) 

3  Equilibrium Problem for the Micro-continuum (RVE) 

The RVE (Representative Volume Element) represents the microstructure of the material, being the 
mechanical behaviour of a macro-continuum point governed by the homogenized response of the RVE. At micro-
scale, the two-dimensional problem considering dissipative phenomena will also represent the problem to be 
studied. To represent the heterogeneity of the microstructure, the RVE is modelled as a plate divided into sub-
regions, where solid and void parts can be defined. The solid part can be composed of different phases, for which 
different elastic properties and constitutive models can be defined. To obtain the integral equation of in-plane 
displacements rates for the microstructure, the Betti’s theorem is applied to each sub-region. Then, the integral 
equation for the zoned plate can be obtained by summing the equations of all sub-regions. Assuming that the RVE 
is composed of Ninc inclusions and Nvoids voids, whose boundaries are adopted such that do not coincide to the RVE 
external boundary, and where no loads bi is defined, the following displacement representation can be written: 
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where q is the source point, k is the fundamental load direction; Ω1 and Γ1 represent, respectively, the domain and 
the external boundary of the matrix; Γm1 is the interface between the matrix and inclusion m and Γ1m  the interface 

between the matrix and a void m; 
 

 

  21

m
m

m

E
E








, ( )m mE E t  , the subscript “1” refers to the matrix, the values 
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 , E , E and E  are referred to the sub-region where the source point q is placed; the free terms values (Ck1 and 

Ck2) depend on the position of the source point q: internal, on the external boundary, on matrix/inclusion interface 
or on matrix/void interface (see the work developed by Fernandes et al [8] for their definition). 

To obtain the algebraic equations, the external boundary and interfaces of the RVE are discretized into 
geometrically linear elements and the domain into triangular cells. The values are approximated by linear shape 
functions over the elements and linear shape functions are adopted to approximate the displacements in the cells. 
But the inelastic forces ( 0

11N , 0
12N , 0

22N ) are assumed constant over the cells in the RVE domain. 

After writing two displacements equations for all RVE nodes (internals, on the interfaces and on the 
boundary), one can get the set of equations necessary to compute the unknowns. After imposing to the boundary 
nodes, the linear displacements field computed from the macro-strain vector ( i

n ), the RVE unknowns’ vector (

X ) can be obtained from the following expression: 

0X L R N                                                      (8) 

where  the X vector  contains the boundary tractions and the displacements at interfaces and internal nodes i.e.: 

int

BP
X

U



 

 
   

 
; the vector 

1L A B  
    represents the RVE elastic solution for the boundary tractions 

and for the displacements at interfaces and internal nodes, being BB Bi

iB ii

G H
A

G H

 

  

 
   

 and 

BB B iB BB H U H U   
     ; the matrix R is given by: 1R A E  

 , where E is obtained by integrating the cells. 

To complete the necessary set of equations, three equations of elastic membrane forces increment (
eN11 eN12

and
eN22 ) are written at the center of each cell, using the following equation: 

0e
NN K S N

                                                                          (9) 

where the matrix S is defined as ' 'S E A R     ; the vector NK   is given by ' 'NK B A L
        and it 

represents the RVE elastic solution for the forces; ' ' 'B iA G H 
      ; ' 'B BB H U 

   . The microscopic 

displacement field u  in the RVE is composed of two parts: the displacement fluctuation field u necessary to 

satisfy the RVE equilibrium equation and the displacement field  u y
  computed after imposing the 

macroscopic strain ( )x  to the RVE boundary: 

     u y u y u y
           (10) 

After discretizing the RVE into cel
N


cells, the RVE equilibrium equation can be written as: 

FR  ( )
( )

1


celN

T ep e
e N e e

e

B C B u



 


     Ae =0                                           (11) 

where 
h

 denotes the discretised RVE domain, Be is the strain-displacement matrix, Ae is the cell area;  
 ep e

NC  

t  
 ep eC  , being  

 ep eC   the constitutive tensor for cell e, computed according to the constitutive model adopted for 

cell e. To find the displacement fluctuation field 
1 1RVE RVE RVEi i iu u u        that satisfies eq. (11), the 

fluctuations corrections (
1RVEiu  ) to be imposed at iteration iRVE+1 are computed from: 
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1 0RVE RVE RVEi i i
FR K u               (12) 

where K is the consistent tangent operator obtained by derivation of Eq. (11), i.e.:

( )

1

cel

RVE RVE

N
i iT epF

e N e
e

R
K B C B

u



 



 
 

 Ae.  

4  Constitutive Model: RVE homogenized response 

The mechanical behaviour of a macro-continuum point is governed by the homogenised stress vector σ(x)=σ 
(eq. 13) and the homogenised constitutive tensor Cep (eq. 14) of the RVE assigned for that point. 

 
1

2 V
   T                                                         (13) 

where 
1





Nb

T
k k

k

F y  , being
( )k nF  1

1

2  e eL L
( )B n

P , Nb the number of nodes used to discretize the RVE boundary, 

n the load increment (related to the macro-continuum problem); Le the length of element e where point k is placed;

( ) ( 1) ( )B n B n B n
P P P  


   , the tractions increment (

( )B n
P  ) are computed from eq. (8), after updating the boundary 

displacements increments ( )B n
U  , by adding the displacement fluctuation field. 

  
( )ep ep Taylor epC C C                                                                   (14) 

where 
( )ep TaylorC  is the Taylor model tangent tensor computed by the volume average of the microscopic 

constitutive tangent tensor 
epC , i.e.: ( )

1

pN
ep Taylor

p

C





pV

V
epC ; 

epC  represents the influence of the 

displacement fluctuation field into the homogenised tangent tensor, defined as: 
epC 1



 
V

1 T
R R RG K G , 

where Np is the number of phases defined in the RVE; the matrices KR  and GR are, respectively, reduced forms of 

K and G, being ( )

1







celN

ep e
e

e

G C B Ve, and they are computed according to the boundary conditions adopted in 

terms of displacements fluctuations. 

5  Numerical Example 

The macro-continuum problem is defined in Fig 1a, where it is assumed a plane stress state and the following 
kinematic constraints have been adopted for the nodes on the fixed side: us=0 and un=0, being n and s the normal 
and tangential directions to the boundary. The other sides are assumed free. A tolerance tol = 1.0 E-5 has been 
adopted for the convergence of both iterative procedures: the one related to the macro-continuum and the other 
one required for achieving the RVE equilibrium. The plate thickness has been assumed equal to t=1mm. We have 
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adopted the mesh depicted in Fig. 1b which has 30 elements and 64 nodes along the boundary and 48 triangular 
cells in the domain. 
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Figure 1- a) Plate definition, b) Plate Discretization. 

The RVE depicted in Fig. 2a, which has only one centred inclusion, and the RVE defined in Fig 2b, with five 
inclusions randomly distributed, will be considered to analyse the influence on the plate mechanical behaviour of 
different distributions of inclusions in the RVE. The RVEs defined in Fig 2c and 2d will be considered to verify 
the influence on the plate mechanical behaviour of different distributions of voids in the RVE. Note that the RVEs 
have the same volume fraction (vf) of inclusions or voids: vf=37%. The inclusions have elastic behaviour with the 
following elastic properties: Young’s modulus E=200GPa and Poisson’s ratio ν=0.2, while the matrix is governed 
by the von Mises criterion assuming E=70GPa, ν=0.3, yield stress σy=243MPa and hardening modulus 
K=2.24GPa. The mesh related to the RVE1 with one inclusion has 576 cells, 321 nodes, 64 boundary elements 
and 36 interface elements (see Fig 2a), while the RVE2 with five inclusions is discretized into 488cells, 277 nodes, 
64 boundary elements and 72 interface elements (see Fig 2b). The RVE3 (see Fig 2c) has been discretized into 
356 cells, 228 nodes, 64 boundary elements and 36 interface elements while in the RVE4 (see Fig 2d) domain 546 
cells, 357 nodes, 80 boundary elements and 96 interface elements have been defined. 

     

Figure 2–a) Mesh for RVE1 with one inclusion b) Mesh for the RVE2 with five inclusions c) Mesxh for the 
RVE3 with one void d) Mesh for the RVE4 with five voids 

In Figs. 3a and 3b are depicted the displacement un at node 39. When RVES 1 and 2 are used (see Fig.3a), 
we can observe that the results compare very well to the BEM/FEM model, developed by Fernandes et al in [3]. 
Besides, we can conclude that adopting different distributions of inclusions in the RVE domain do not significantly 
affect the plate mechanical behaviour. When RVE 3 and 4 are considered (see Fig. 3b), we observe that the 
different distribution of voids has important influence on the plate mechanical behaviour, because the plate 
modelled with the RVE3, with only one void, presents bigger rigidity and strength. We can also note that the limit 
load achieved with the proposed model is considerably bigger than the one related to the BEM/FEM model. 

a b c d 
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Figure 3 – Displacement un at node 39 along the load incremental process of the plate a) using RVEs 1 and 
2; b) using RVEs 3 and 4. 

6  Conclusions 

In the present paper, a BEM formulation to model the stretching plate problem is coupled to a BEM 
formulation to model the constitutive response of heterogeneous materials, to perform a full coupled multi-scale 
analysis of plates considering dissipative phenomena. We have shown that different distribution of inclusions in 
the RVE domain do not affect the rigidity or the strength of the plate, but when five voids are defined in the RVE 
domain instead of only one void, both the strength and the rigidity of the plate are considerably reduced. The 
proposed modelling shows the BEM as a good alternative to perform multi-scale analysis, because it presented 
good qualitative results, the results compared well to the coupled BEM/FEM model, the model presented stability 
during the iterative procedures (for macro and micro scales) and it achieved the solution with a computation effort 
much smaller when compared to the BEM/FEM model. 
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