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81531-990, Curitiba, Paraná, Brazil
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Abstract. The Modified Local Green's Function Method (MLGFM) is an integral method hybrid of the Finite
Element Method (FEM) and the Boundary Element Method (BEM). The method uses the FEM to create discrete
projections of the Green's functions that will be used as fundamental solutions in BEM formulation. The MLGFM
has the advantage of presenting high convergence for the displacements in the domain, inherited from the FEM, and
for the normal stress on the boundary, inherited from the BEM. Despite these advantages, the recovered stress in
the domain has not been explored in previous works. As the MLGFM is a hybrid of the FEM and BEM, techniques
used in these methods will be explored in this paper to study the advantages and disadvantages of each one. The
techniques that will be used here are the Least Squares procedure, the Zienkiewicz and Zhu (ZZ) recovery, both
widely used in FEM, and using the integral form derived from the fundamental solution used in the BEM. The
techniques will be analyzed in terms of errors and computational cost of each one.
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1 Introduction

The Modified Local Green's Function Method (MLGFM) was proposed, initially, in the work of Barcellos
and Silva [1], being described as a hybrid method of the Finite Element Method (FEM) [2] and the Boundary
Element Method (BEM) [3, 4]. The MLGFM uses the FEM technique to obtain discrete projections of the Green’s
Functions and use them as Fundamental Solutions in BEM.

The main advantage of the MLGFM is that its presents good convergence for both displacements in all the
domain and the tractions in all the boundary [5]. The mathematical background of the method was presently with
details in Barbieri et al. [5].

In almost all engineering applications the recovery of the stress field in all the domain is mandatory to a
correct design of the structural element. In all the previous works about MLGFM, the Least Squares procedure
was used to recover the stress field when necessary. But due the method characteristics, other procedures usually
applicable in FEM and BEM are also applicable in the MLGFM. Recently, Corrêa et al. [6] developed a new
approach to the MLGFM, this paper is based in this formulation.

The goal of this work is to compare some stress recovery techniques used in FEM and BEM and to analyze
the advantages and disadvantages of each one. In this paper, the Least Squares procedure [7], the Zienkiewicz and
Zhu (ZZ) recovery [8, 9], both widely used in FEM, and the integral form used in BEM [4] are applied.

2 Modified Local Green's Function Method formulation

As mentioned before, the formulation present here is based on a new approach proposed by the authors in
Corrêa et al. [6]. Given a general elastic problem, the following boundary value problem can be found [2]:

∇ · σ = b in Ω, (1)

where σ is the stress tensor, b are the body forces, and ∇ is the gradient operator, with the following boundary
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conditions:

u = ū in ΓD, (2)

and

σ · n = t̄ in ΓN, (3)

where n is the normal vector to the boundary, t are the boundary reactions, and ΓD and ΓN are the Dirichlet and

Neumann boundaries, respectively.
Applying the weighted residual method over the domain using w as a weight function, and applying the

Green's theorem, the following equation can be obtained:

∫
Ω

∇swT C∇su dΩ =

∫
Ω

wT b dΩ+

∫
Γ

wT t dΓ, (4)

where C is the constitutive relationship tensor and ∇s(·) is the symmetrical part of tensor ∇(·).

Now, using the domain, Ψ(x), and boundary, Φ(x), shape functions, the domain and boundary fields are
described as:

ũ(x) =

 Ψ(x) 0

0 Ψ(x)

 uD, (5)

b̃(x) =

 Ψ(x) 0

0 Ψ(x)

 bD, (6)

and

t̃(x) =

 Φ(x) 0

0 Φ(x)

 tB, (7)

where, for 2D case, x ∈ R2, uD, tB and bD are the vector with nodal values of u, t and b, respectively.

The domain shape functions Ψ(x) are the Finite Element Method shape functions, and the boundary shape
functions Φ(x) need to respect the trace property, in other words:

Φ(x) = lim
x→Γ

Ψ(x), (8)

The main difference between the MLGFM and the FEM is that the first one does not require that the weight
functions are null in the Dirichlet boundary, as the FEM. Since the weight functions are not null, it is necessary
to define an approximation for the tractions in all boundary by eq. (7). Using this approximation, and the ones in
eq. (5) and (6), and using the same basis functions as weight functions w, the eq. (4) can be rewritten as:

KuD = DtB +AbD, (9)

where K is the same stiffness matrix as the FEM, D is the matrix of the inner dot product on the boundary shape

functions, and A is the matrix of the inner dot product on the domain shape functions.
The Green's functions are not required to be obtained in this approach, they are implicit in the formulation

and can be defined as [6]:

KGDQ = A or GDQ = K−1 A; (10a)

KGBQ = D or GBQ = K−1 D; (10b)

where GDQ and GBQ are the nodal values of the Green's functions projections when the source is on the domain
and on the boundary, respectively. More details about these projections can be found in Barbieri et al. [5].
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The system in eq. (9) can be solved by imposing the boundary conditions in a similar way to the BEM,
switching columns of K and B related to the prescribed boundary conditions as:

[−D | K]

 tB

uD

 =
[
−K̄ | D̄

]  ūD

t̄B

+AbD, (11)

where ūD and t̄B are the prescribed displacements and tractions in the boundary.

3 Least Squares technique

Proposed in Zienkiewicz and Zhu [9] this technique is widely used in FEM context, the idea is to represent
each component of the stress tensor σ, let’s call a generic component of σ as S(x), in the form [10]:

S(x) = p(x)T S, (12)

where p(x) is a vector of monomials and S is a vector to be determined in order to minimize error related to S(x).

S is obtained by the minimization of the square error, as:

E(S) =
1

2

∑
j∈Ak

[
S(xj)− p(xj)

T S
]2

. (13)

If the number of the terms of the basis p(x) are equal or smaller than the number of points in the cloud k, the
system can be solved as:

ES = F (14)

where:

E =
∑
j∈Ak

p(xj)p(xj)
T (15)

and

F =
∑
j∈Ak

p(xj)S(xj). (16)

This process is repeated for each node k in the mesh.

4 Zienkiewicz and Zhu (ZZ) recovery technique

The second stress recovery technique is also proposed in Zienkiewicz and Zhu [9] and consists in a L2

projection in an element patch. The goal is to represent each component of the stress tensor σ, let´s say S(x), as:

S∗(x) = Ψ(x)T S∗, (17)

where Ψ(x) are the same basis used in the FEM approximation and S are the set of nodal values of S∗(x), the

approximation of S(x).
In order to minimize the error of the approximation given by:

EL2
=

∫
Ω

(S(x)− S∗(x))
2
dΩ =

∫
Ω

(
S(x)−Ψ(x)T S∗)2 dΩ, (18)

the minimization condition of eq. (18) leads to:
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∫
Ω

Ψ(x)T Ψ(x) dΩS∗ =

∫
Ω

Ψ(x)T S(x) dΩ, (19)

that results in a system in the form:

ES∗ = F. (20)

5 BEM Integral form

Once the values of u and t are known on the boundary, after the solution of eq. (9), the stress tensor, for each
source point ξ, can be obtained by the integral form[3, 4]:

σij(ξ) =

∫
Γ

Dkij(ξ,x) Φk(x) dΓ tk −
∫
Γ

Skij(ξ,x) Φk(x) dΓuk +

∫
Ω

Dkij(ξ,x)Ψk(x) dΩ bk (21)

where:

Dkij(ξ,x) =
1

rα
{(1− 2ν) {δki r,j + δkj r,i − δij r,k}+ β r,i r,j r,k}

1

4απ (1− ν)
(22)

and

Skij(ξ,x) =
2

rβ

{
β

r

∂n
[(1− 2ν)δij r,k + ν (δik r,j + δjk r,i)− γ r,i r,j r,k]

+ β ν (ni r,j r,k + nj r,i r,k)

+ (1− 2ν) (β nk r,i r,j + nj δik + ni δjk)− (1− 4ν)nk δij

}
1

4απ(1− ν)
,

(23)

with α = 1, β = 2 and γ = 4 for 2D problems, and α = 2, β = 3 and γ = 5 for 3D problems, δij is the Kronecker

delta, n is the normal vector to the boundary, µ is the Lamé’s constants, ν is the Poisson ratio, r is the distance
between the source and the field point and:

r,i =
∂r

∂xi
. (24)

6 Numerical Example

The numerical example analyzed here is an L-shaped plane elastic domain with thickness t and having a
singularity point. The model scheme is shown in Fig. 1 and the load is obtained from the analytical solution of
stress [11]:

σx = K1 λ1 r
λ1−1 {[2−Q1 (λ1 + 1)] cos (λ1 − 1) θ − (λ1 − 1) cos (λ1 − 3)θ} , (25)

σy = K1 λ1 r
λ1−1 {[2 +Q1 (λ1 + 1)] cos (λ1 − 1) θ + (λ1 − 1) cos (λ1 − 3)θ} , (26)

τxy = K1 λ1 r
λ1−1 [(λ1 − 1) sin (λ1 − 3) θ +Q1 (λ1 + 1) sin (λ1 − 1) θ] , (27)

where r and θ are the polar coordinates shown in Fig. 1, K1 is a generalized stress-intensity factor (here assumed
as K1 = 1), λ1 = 0.544483737 and Q1 = 0.543075579.

The Dirichlet boundary conditions are imposed by the analytical solution of displacements [11]:
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ux =
K1

2G
rλ1 {[κ−Q1 (λ1 + 1)] cosλ1 θ − λ1 cos (λ1 − 2) θ} , (28)

uy =
K1

2G
rλ1 {[κ+Q1 (λ1 + 1)] sinλ1 θ − λ1 sin (λ1 − 2) θ} , (29)

where G is the shear modulus and κ depends on Poisson’s ratio ν only. For plane strain, the following relation is
valid: κ = 3− 4ν [11]. Here is assumed ν = 0.3.

a

a

a

a

ΓN

ΓN

ΓN

ΓN

ΓD

ΓD

y

xO

O′

r
θ

Figure 1. L-shaped domain scheme, a = 10.

For the MLGFM model, Lagrange quadratic functions were used for the boundary meshes and bi-quadratic
Lagrange functions for the domain meshes. For error analysis, an approximation of the L2-norm error was used,
for each stress component, defined as:

ϵer =
1

|S|max

√√√√ 1

N

N∑
i=1

(
S
(e)
i − S

(n)
i

)2

, (30)

where N is the number of nodes, |S|max is the maximum value on N samples nodes, S(e)
i is the exact value on node

i and S
(n)
i is the approximate value on node i. The error for σx, σy and τxy components using the three recovery

techniques are presented in Fig. 2, Fig. 3 and Fig. 4. Due to the hypersingularity of the integral form for boundary
points (r → 0), defined in eq. (21), only the stresses in internal points are analyzed in this paper.

As can be noticed in Figs. 2, 3 and 4 the errors using the Least Squares and the ZZ recovery are small and very
similar to each other, but the errors using the BEM Integral form are considerable smaller than the others. In terms
of convergence rates, the three techniques showed similar rates for all stress components. This can be explained
due the fact that the integral form presents less numerical degradation than the other stress recovery techniques.
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Figure 2. Error for σx stress component.
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Figure 3. Error for σy stress component.
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Figure 4. Error for τxy stress component.

7 Conclusions

In this paper three procedures to recover the stress field in MLGFM are analyzed, two of them (Least Squares
and ZZ recovery) proposed by Zienkiewicz and Zhu [9] and widely used in methods based on the FEM, and one
where the stresses are obtained directly from the BEM integral form. Although Least Squares and ZZ recovery
present small errors with values very similar to each other, the integral form presents smaller errors compared
to these other two techniques. These results are expected due the integral form doesn’t present the numerical
degradation of the result that the methods used in FEM present.

For future works, the idea is to explore some techniques to avoid the problem of the hypersingularity of the
integral form in boundary points and explore other examples and other types of problems.
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