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Abstract. Hydraulic fracturing is a relevant issue in Geomechanics, especially when analyzing hydrocarbon 

production and associted physical phenomena. Several numerical, analytic, and semi-analytic methods have been 

developed to predict fluid-driven fracture propagation response. Traditional continuum-based numerical coupling 

methods, such as FEM or XFEM, allow the study of complex and realistic scenarios. However, they frequently 

require enormous computational effort, which is more evident in 3D modeling.On the other hand, most analytic 

solutions provide fast estimates but are limited to basic conditions, such as the analysis of the fracture domain 

only. In this context, semi-analytic methods are presented as an alternative that can provide solutions faster than 

traditional numerical methods. In addition, those methods apply to more realistic scenarios than analytic solutions. 

This work proposes a sequential explicit two-way coupling methodology to analyze planar hydraulic fracture 

propagation in pressurized rock formations. The coupling methodology associates the Finite Element Method used 

to solve the fluid flow problem with the semi-analytical Displacement Discontinuity Method to solve the 

mechanical problem. The proposed approach allows predicting fluid-driven fracture propagation in a planar 

domain considering arbitrary in-situ stresses and fluid flow conditions in the surrounding porous medium. The 

numerical results are compared to asymptotic analytical and numerical solutions, showing good accuracy and 

expressively lower computational cost than traditional numerical schemes. 

Keywords: Hydraulic fracturing, Coupled analysis, DDM method, iterative scheme. 

1  Introduction 

Hydraulic fracturing is a relevant issue in Geomechanics, especially in assessing unconventional hydrocarbon 

reservoir production [1,2]. The fracturing process involves several complex physical phenomena, such as 

mechanical deformation, fluid migration, thermal state variation, and chemical reactions [3,4]. Among these 

phenomena, hydraulic and mechanical behaviors are significant in determining the response of hydraulic 

fracturing. These aspects have attracted the attention of multiple researchers aiming to study hydromechanical 

coupled participation [7,8,9].  

Several numerical, analytic, and semi-analytic methods have been developed to predict fluid-driven fracture 

propagation response. Analytical methods, such as simplified KGD [10,11,12] or penny-shaped solutions [13,14], 

provide fast solutions for the evolution of hydraulic fracturing.Nevertheless, these solutions are generally limited 

to specific scenarios characterized by regular reservoir geometries, homogeneous media, regular fracture 

propagation shapes, etc. On the other hand, numerical methods such as Finite Element Methods (FEM) [15,16], 

Boundary Element Methods (BEM)[17,18], and Extended Finite Element Methods (X-FEM)[19,20], among 

others, allow the analyses of more complex and realistic problems, including arbitrary domain geometry, layered 
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formations, and non-uniform fluid distribution. However, these numerical methods require robust computational 

capacity, especially in tridimensional problems where the number of unknowns reaches the order of millions. In 

this context, semi-analytical methodologies appear as attractive alternatives for solving problems involving 

realistic conditions while maintaining a low computational effort compared to more general numerical methods. 

In this sense, several researchers have utilized the Displacement Discontinuity Method (DDM), a boundary-based 

formulation developed by Crouch [21], to model the mechanical response of hydraulic fracturing propagation.  

Studies, ranging from two-dimensional fracturing simulations [22,23] to complex three-dimensional fracture 

propagation [24,] show the capability and flexibility of DDM in handling mechanical problems. However,  DDM 

is frequently associated with hydraulic analysis, primarily focusing on fluid flow inside the fracture [25]. Paullo 

Muñoz et al. [26] proposed a coupling scheme combining FEM and DDM to assess two-dimensional hydraulic 

fracture propagation under fluid migration from the fracture to the surrounding media condition. The coupling 

strategy is another important aspect of the hydraulic fracturing analysis. Various fully coupled and pseudo-coupled 

schemes have been formulated to address fluid-driven fractures. Fully coupled formulations [27] offer more 

accurate results. However, they are computationally expensive. On the other hand, pseudo-coupled schemes 

provide faster solutions once the order of their resulting system of equations is considerably lower. Furthermore, 

purely sequential schemes [28] have been proposed to attain accurate results for pseudo-coupled solutions while 

maintaining reasonable computational efficiency. This work proposes a sequentially coupled 3D-DDM-FEM 

approach to study planar hydraulic fracturing in homogenous rock formations. Building upon the previous work 

by Paullo et al. [26], this approach extends the capabilities to three-dimensional scenarios. It employs an explicit 

two-way coupling scheme based on fracture aperture and fluid pore pressure. The numerical results exhibit 

excellent agreement compared to analytic solutions for penny-shaped hydraulic fractures. 

2  Numerical formulations 

2.1 Mechanical analysis 

The displacement discontinuity method is adopted to evaluate mechanical behavior, which is based on establishing 

a discontinuity of the displacement field. For 3D planar fracture, the discontinuity is symmetric to the original 

plane in local coordinates, as shown in Figure 1, where the discontinuity amplitude 𝑤 represents the separation 

between the 𝐶+ and 𝐶− planes.  

 

 

Figure 1. Schematic representation of a discontinuity in a continuum medium. 

Navier’s equations establish the mechanical equilibrium as follows, 

 

 ∇2𝑈𝑖  =
1

1−2𝜈
∑

𝛿2𝑈𝑖

𝛿𝑥𝑖𝛿𝑥𝑗
𝑗 = 0 

 
          (1) 

where U is the displacement field, 𝜈 is Poisson’s coefficient, and 𝑥𝑖 indicates the 𝑖𝑡ℎ cartesian direction. The 

solution for each particular case must consider the corresponding boundary conditions. The proposed approach 

adopts the following assumptions to solve the mechanical problem: homogenous medium, linear elastic material, 

and small strains and displacements (geometrically linear). 

 

Defining a planar and rectangular discontinuity with dimensions Δ𝑥 and Δ𝑦 as shown in Figure 2, the normal 

discontinuity field 𝑤 can be expressed as: 
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𝑤 = 𝐴𝑧𝐷(𝜉, 𝜂)  = 𝑢𝑧(𝜉, 𝜂, 0+) − 𝑢𝑧(𝜉, 𝜂, 0−) (2) 

  

 

Figure 2. A rectangular planar portion of discontinuity in an infinite space. 

where 𝜉 and 𝜂  are the discontinuity’s local coordinates,  𝐴𝑧 is the amplitude, and 𝐷(𝜉, 𝜂) is a normalized 

discontinuity shape. The solution of equation           (1) results in the following fundamental solution of the 

displacement field 

𝑈𝑥 = 𝐴𝑧(−(1 − 2𝜈)𝐼,𝑧− 𝑧𝐼,𝑥𝑧 ) 

𝑈𝑦 = 𝐴𝑧(−(1 − 2𝜈)𝐼,𝑦− 𝑧𝐼,𝑦𝑧 ) 

𝑈𝑧 = 𝐴𝑧(−(1 − 2𝜈)𝐼,𝑧− 𝑧𝐼,𝑧𝑧 ) 

(3) 

  

where the kernel function 𝐼 is given by 

 

 𝐼(𝑥, 𝑦, 𝑧) =
𝐸

8𝜋(1−𝜈)
∫ ∫

𝐷(𝜉,𝜂)

[(𝑥−𝜉)2+(𝑦−𝜂)2+𝑧2]
 𝑑𝜉𝑑𝜂

𝐴
 (4) 

  

and 𝐸 is Young’s modulus. The strain field can be derived by applying the linear kinematic relationship, and 

stresses can be obtained through the generalized Hooke law. For hydraulic fracturing, the component of interest is 

the normal stress, 𝜎𝑧𝑧, which is expressed as, 

 

𝜎𝑧𝑧  = 2𝐺𝐴𝑧(𝑓,𝑧𝑧+ 𝑧𝑓,𝑧𝑧𝑧 ) (5) 

where 𝐺 = 𝐸/(1 − 2𝜈) is the elastic shear modulus. Substituting equation (4) in (5), and Considering 𝐷(𝜉, 𝜂) = 1 

and planar propagation, i.e., z = 0 the normal stress component is given by 

 

   𝜎𝑧𝑧(𝑥, 𝑦) = −𝐴𝑧
𝐸

8𝜋(1−𝜈)
[[

1

[(𝑥−𝜉)2+(𝑦−𝜂)2]3/2]
−Δ𝑥/2

Δ𝑥/2

]
−Δ𝑦/2

Δ𝑦/2

 
(6) 

  

The amplitude of the displacement discontinuity field can be obtained by establishing known boundary conditions 

to ensure stress equilibrium inside the fracture. For this, the fracture domain is discretized into a finite number of 

rectangular displacement discontinuity elements. Hydraulic fracturing is established by the equilibrium of normal 

stresses within each element considering the in-situ far stress field and the internal fluid pressure. Thus, the 

following system of equations can be formulated, 

 

 𝑝𝑖 + 𝜎0,𝑖 = ∑ 𝐶𝑖,𝑗𝐴𝑧𝑗
𝑁
𝑗=1        𝑖 = 1. . 𝑁 (7) 

  

where 𝑝 is the internal fluid pressure, 𝜎0 represents the far normal stress, and 𝐶𝑖,𝑗 is the coefficient of deformability 

contribution obtained from equation (5) for three-dimensional cases. Equation (7) can be expressed in matrix form 

as 

 

𝑯 𝐴̅ = 𝝈̅       (8) 

  

where 𝑯 represents the stiffness matrix that is symmetric and positive definite. The numerical procedure proposed 

is similar to that adopted for two-dimensional cases [26].   
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2.2 Hydraulic Analysis 

The hydraulic analysis follows using Finite Element Methods. The governing equation for isothermal single-phase 

flow in porous media, assuming Darcy flow without compositional effects, is given by 

 

 
1

𝑀

𝜕𝑝

𝜕𝑡
+ ∇𝒗 = 𝑄 (9) 

 

where 𝑝 represents the fluid pore pressure, 𝒗 is the fluid seepage velocity, 𝑄 is the fluid source and/or sink, ∇ is 

the gradient operator, and 𝑀 is Biot’s modulus. The seepage velocity is expressed as 

 

 𝒗 = 𝒌𝑚 {
𝛻𝑝

𝛾𝑓
− 𝒊𝑔} (10) 

 

where 𝒌𝑚 is the hydraulic conductivity matrix, 𝒊𝑔 is the gravity vector, and 𝛾𝑓 is the specific fluid weight. The 

continuity equation, Eq. (9), can be discretized using the standard Galerkin method, which results in  

 

 
1

𝑀
∫ 𝑵𝑝

𝑇
𝛺

𝑵𝑝𝑑𝛺. 𝒑̇ + ∫ 𝑩𝑝
𝑇

𝛺

𝒌𝑚

𝛾𝑓
𝑩𝑝𝑑𝛺. 𝑝 = ∫ 𝑄

𝛤
𝑵𝑝𝑑𝛤   (11) 

  

where 𝑩𝑝 = [
𝜕𝑵𝑝

𝜕𝑥

𝜕𝑵𝑝

𝜕𝑦
], 𝒑 is the nodal pore fluid pressure, and 𝑵𝑝 is the shape function vector. 

 

Reynold’s lubrication theory governs fluid flow inside the fracture channel, which occurs in the longitudinal 

direction inside the fracture and the normal direction at the top and bottom fracture surfaces. Assuming Newtonian, 

isothermal, and incompressible fluid, Equation (9) can be rewritten as 

 

 
𝜕𝑞𝑓

𝜕𝑥
+ 𝑞𝑇 + 𝑞𝐵 = 𝑞𝑖 

(12) 

 

where 𝑞𝑓 is the longitudinal fluid flow, 𝑞𝑖 is the fluid injected into the fracture channel, 𝑞𝑇 and 𝑞𝐵 are the fluid 

leak through the top and bottom faces of the fracture into the porous medium, respectively. The cubic law of 

parallel plates governs the longitudinal fluid flow 𝑞𝑓 inside the fracture that depends on the fracture aperture Δ𝑛 

and is defined as, 

 𝑞𝑓 = −
∆𝑛

3

12.𝑢𝑓

𝜕𝑝𝑓

𝜕𝑥
  (13) 

 

here 𝑢𝑓 is the fluid viscosity and 𝑝𝑓 is the fluid pressure inside the fracture. According to the continuum case, the 

continuity equation in the fractures Eq. (12) can be discretized using the standard Galerkin method. More details 

of the hydraulic formulation used in this work can be found in [14]. 

2.3 Coupling parameters 

The discontinuity amplitude assessed through the DDM formulation determines the fracture aperture of the 

interface elements used in the hydraulic FEM analysis. Consequently, it becomes feasible to establish a coupling 

relationship involving fracture aperture, pore pressure, and the stress field inside the fracture, as defined by:    

 

𝜎̅𝑖 ≈ 𝑝𝑖
∗ + 𝜎0,𝑖,   ∆𝑛

∗ ≈ 𝐴𝑧𝑖 (14) 
 

where 𝑝𝑖
∗ is the internal fluid pressure at the center of the interface element and ∆𝑛

∗  represents the fracture aperture. 

All numerical processes are performed in an in-house framework Gema [29]. The explicit two-way coupled 

scheme with fixed time increments implemented in Paullo Muñoz et al. [26] is adopted here. 
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3  Numerical Examples 

3.1 Penny Shaped: Impermeable case 

The first benchmark consists of a penny-shaped hydraulic fracture in an impermeable homogeneous porous 

medium. The results of the proposed DDM-FEM approach are compared against those obtained via a penny-

shaped analytic solution presented by Gao and Ghassemi [30]. Figure 3 depicts a prismatic domain discretized by 

regular hexahedral elements.  The horizontal region where the fracture surface is expected is discretized by squared 

interface-DDM elements with a square size equal to L=0.20m. In the impermeable case, mesh discretization in the 

vertical direction is irrelevant to the response since fluid flow is confined to the horizontal fracture surface 

(interface elements). Figure 3 also shows the hydromechanical properties of the problem.  

 

  

Figure 3. 3D DDM-FEM model with regular mesh. 

Figure 4 shows the pressure evolution at the injection point over time, considering the variation of the time 

increment dt. As expected, the comparison between the proposed approach and analytical solution shows 

convergence with the reduction of dt, validating the implementation of the proposed methodology for this case of 

study. 

 

 

Figure 4. Pressure vs time at injection point. 

3.2 Penny-shaped fracture: near M-Vertex regime 

The second benchmark evaluates the capability of the proposed methodology to predict penny-shaped fracture 

propagation under the viscosity-dominated regime, commonly referred to as the M-Vertex regime [15]. This 

example employs the same model as the previous example, i.e., with L = 0.20 m. The time increment adopted for 

this example is dt = 0.1s. The numerical results are compared with the analytical solution presented by Zielonka 

et al. [16]. The hydromechanical properties adopted in [16] are summarized in Table 1. 

 

 

 

Properties Symbol Values Units 

   Young’s modulus 𝐸 38.8  𝐺𝑃𝑎 

   Poisson’s ratio 𝜈 0.15  --- 

   Fracture toughness 𝐾𝐼𝐶  8.91  𝑀𝑃𝑎. 𝑚0.5 

   Tensile strength 𝜏𝑐  14.0  𝑀𝑃𝑎 

Hydraulic conductivity 

 

K 10−16  m/s 

Fluid specific weight 𝛾𝑓  9.8 kPa/m 

Biot coefficient 𝐵 1.0 -- 

   Dynamic fluid viscosity 𝜇 0.0005  𝑃𝑎. 𝑠 

   Injection flow rate 𝑄0 0.001 𝑚3/𝑠 
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Table 1. Hydromechanical properties for the penny-shaped problem under M-vertex regime [19] 

Properties Symbol Values Units 

Young’s modulus 𝐸 20 𝐺𝑃𝑎 
Poisson’s ratio 𝜈 0.25 --- 

Fracture toughness 𝐾𝐼𝐶  1.0 𝑀𝑃𝑎. 𝑚0.5 

Tensile strength 𝜏𝑐 1.0 𝑀𝑃𝑎 

Hydraulic conductivity 𝐾 9.8 × 10−9 m/s 

Fluid specific weight 𝛾𝑓 9.8 kPa/m 

Biot coefficient 𝐵 0.75 -- 

Dynamic fluid viscosity 𝜇 0.001 𝑃𝑎. 𝑠 

Injection flow rate 𝑄0 0.001 𝑚3/𝑠 

 

Figure 5 shows the evolution of the fracture aperture and the pressure at the injection point obtained with the 

proposed DDM-FEM scheme and the analytic solution presented in [16] over time. The proposed solution shows 

good agreement with the analytic solution for the fracture aperture and injection pressure when comparing with 

other numerical methods (see [16]). These results show that the proposed methodology can predict the hydraulic 

fracture propagation in problems with fluid migration into the rock formations. 

 

Figure 5. Fracture aperture and pressure vs time at injection point.   

4  Conclusions 

This work proposes an explicit coupling scheme that combines the Finite Element Method (FEM) for fluid 

migration and the Displacement Discontinuity Method (DDM) for mechanical analysis. Numerical results 

concerning the penny-shaped problem under impermeable conditions demonstrate that reducing the time increment 

contributes to the convergence of the FEM-DDM method towards the analytical solution. The results of the 

proposed methodlogy show no stability issues. The results of the proposed method closely align with the analytical 

solution when investigating penny-shaped fracture propagation under the M-Vertex regime. Results obtained with 

the proposed FEM-DDM coupling scheme exhibit good agreement with those obtained via the analytic solutions, 

underscoring the consistency of the proposed scheme. 
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