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Abstract. Relying upon a three-dimensional finite element analysis, this contribution investigates the instantaneous
irreversible response induced by the constitutive behavior of the rock mass in the convergence profile of deep twin
tunnels with transverse gallery. At the rock material level, elastoplastic state equations based on a Drucker-
Prager yield surface with an associated flow rule are adopted in the modeling. As regards the tunnel support, the
formulation accounts for the presence of an elastic shotcrete-like lining. From a computational point of view, the
deactivation-activation method is used to simulate the excavation process and the installation of the lining. The
accuracy of the finite element predictions is assessed through comparisons with the available analytical solutions
formulated in a simplified scenario for the twin tunnel configuration. A applicatoin study investigates the mutual
interaction induced by the proximity of the tunnels, gallery and the influence of the lining stiffness. Reducing
lining stiffness by 70% led to a 12% increase in convergence and a 40% expansion of the gallery influence zone.
The interaction between longitudinal tunnels became significant when their axes were by four tunnel radii apart,
although it had minimal impact on the gallery’s influence zone range along the longitudinal tunnels.
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1 Introduction

Many design methods often focus on single tunnels, however twin tunnels are a common occurrence. The
interaction between tunnels can be significant, especially when the spacing between them is minimal. Additionally,
many twin tunnels incorporate transverse galleries, introducing a localized effect on displacements and stresses.
While the simulation of tunnel convergence in single tunnels has been widely investigated and reported in published
literature, few works have addressed the computational evaluation of deformation in deep twin tunnels. Some studies
on deep twin tunnels can be found at Chen et al. [1], Ma et al. [2], Fortsakis et al. [3], Chortis and Kavvadas [4],
Chortis and Kavvadas [5], Guo et al. [6], Chortis and Kavvadas [7], Chortis and Kavvadas [8]. However, less
attention has been dedicated to assessing the mutual mechanical interaction induced by the excavation of the
transverse gallery connecting the twin tunnels.

The constitutive state equations of the rock mass are developed using a plasticity framework, which is suitable
for clayey rocks. For the mechanical behavior of the concrete lining, the traditional linear elastic model is employed.
The constitutive models for the rock mass and the associated numerical integration schemes are implemented into
the UPF/USERMAT customization tool [9] of the ANSYS standard software. The main contributions of this paper
can be summarized at the structural analysis level. The deformation of the highly interactive components of the
material system (i.e., rock mass and lining) resulting from the excavation of twin tunnels and transverse gallery
is simulated using three-dimensional finite element simulations. The excavation and lining placement processes
are simulated through the activation/deactivation technique. This three-dimensional finite element analysis is
specifically designed to address the interactions induced by the construction process, the proximity of twin tunnels,
and the presence of the transverse gallery. In application analysis, for the constitutive parameters and tunneling
conditions adopted, the stiffness of the lining had a significant impact on the convergence profile and gallery
influence zone’s range along the longitudinal tunnels.
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2 Constitutive Models

The constitutive model for the rock mass corresponds to the associated Drucker-Prager elastoplastic model.
The local strain rate ¤𝜺 is split into two contributions ¤𝜺 = ¤𝜺𝑒 + ¤𝜺𝑝 , so that the constitutive relationships relating the
Cauchy stress rate ¤𝝈 and strain rate components can be written as:

¤𝝈 = 𝑫 : ¤𝜺𝑒 = 𝑫 : ( ¤𝜺 − ¤𝜺𝑝) (1)

In the above relationship, ¤𝜺𝑒 and ¤𝜺𝑝 , represent respectively the elastic and plastic strain rate, and 𝑫 denote
the fourth-order isotropic elastic linear constitutive tensor defined by the rock mass elastic Young modulus 𝐸 and
Poisson ratio 𝜈. The plastic strain rate is given by the flow rule:

¤𝜺𝑝 =


¤𝜆 𝜕𝑔
𝜕𝝈

for 𝑓 > 0

0, for 𝑓 ≤ 0
(2)

where 𝑓 is the plastic flow surface, ¤𝜆 is the plasticity multiplier (obtained through the consistency condition ¤𝑓 = 0)
and 𝑔 is a potential flow function analogous to 𝑓 used to simulate the volume dilatation during the evolution of
plastic deformations. However, for this analysis, associated plasticity was adopted, i.e., 𝑔 = 𝑓 . In this model, the
Drucker-Prager plastic flow surface is employed and given by

𝑓 (𝝈, 𝑞) = 𝑓 (𝐼1, 𝐽2, 𝑞) = 𝛽1𝐼1 + 𝛽2
√︁
𝐽2 − 𝑞(𝛼) (3)

which 𝐼1 is the first invariant of the stress tensor, 𝐽2 is the second invariant of the deviator tensor and 𝛽1, 𝛽2 and
𝑞(𝛼) are strength parameters related to the friction angle 𝜙 and cohesion 𝑐(𝛼), respectively. The Drucker-Prager
plasticity surface inscribed in the Mohr-Coulomb surface is considered, i.e. [10]:

𝛽1 =
(𝑘 − 1)

3
, 𝛽2 =

(2𝑘 + 1)
√

3
, 𝑞(𝛼) = 2

√
𝑘 𝑐(𝛼) (4)

where 𝑘 = (1 + sin 𝜙)/(1 − sin 𝜙). The internal variable 𝛼 is the equivalent plastic strain 𝜀𝑝 used to simulate strain
hardening/softening phenomena. However, for this study, we adopt perfect plasticity, meaning that c is a constant.

A linear elastic constitutive model is used for the concrete lining, which can be expressed, within the framework
of infinitesimal analysis, as ¤𝝈 = 𝑫 : ¤𝜺𝑒, where, ¤𝜺𝑒 and 𝑫 are respectively the elastic strain rate and the fourth-order
isotropic elastic constitutive tensor defined by the concrete lining Poisson ratio 𝜈𝑐 and elastic Young modulus 𝐸𝑐.
In the analyses of section 5, for comparisons, the tunnel lining stiffness will be given by the following expression
[11]:

𝐾𝑐 =
𝐸𝑐

(1 + 𝜈𝑐)
𝑅2
𝑡 − (𝑅𝑡 − 𝑒𝑡 )2

[(1 − 2𝜈𝑐)𝑅2
𝑡 + (𝑅𝑡 − 𝑒𝑡 )2]

(5)

where 𝑅𝑡 is the tunnel radius and 𝑒𝑡 is the tunnel wall thickness.

3 Spatial discretization of the domain

The material domainΩ for finite element simulations is defined as a parallelepiped with dimensions (𝐿1 + 𝐿2)×
𝐿3 × 𝑑3 (see Fig. 1). Due to symmetry, only the material portion in the region {𝑥 ≤ 0, 𝑦 ≥ 0} is discretized for F.E.
analysis. In Fig. 1, 𝑑1 represents the distance between the axes of longitudinal tunnels, 𝐿2 is the total excavated
length along longitudinal direction 𝒆𝑧 , 𝑑3 is the domain thickness along vertical direction 𝒆𝑦 , 𝐿1 is the length of
the unexcavated region after tunneling, 𝐿3 is the domain length along transversal direction 𝒆𝑥 , and 𝑑2 indicates the
position of the transverse gallery axis that intersects the longitudinal tunnel at 𝑧 = 𝐿1 + 𝑑2.

The mesh used consists of either 119740 or 221104 total elements (hexahedra and tetrahedra), depending
on the longitudinal tunnel spacing 𝑑1. To enhance model accuracy in the intersection zone, 10-node quadratic
tetrahedral elements are used around the transverse gallery, while 8-node trilinear hexahedral elements are employed
in the rest of the domain. Regions significantly influenced by tunneling are highlighted in light gray in Fig. 1. Two
values of 𝑑1 are considered in the simulations: 𝑑1 = 16𝑅𝑡 and 4𝑅𝑡 .

The concrete lining along the gallery wall, shown in red in Fig. 1, has a thickness 𝑒𝑔. The gallery radius 𝑅𝑔

is fixed at 2/3𝑅𝑡 for simplicity, with the same lining system (same concrete material and layer thickness) applied
to both longitudinal tunnels. Parameters 𝑑5 and 𝑑1 define the size of the transition region involving tetrahedral
elements in the 𝑦𝑧 plane around the gallery.
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The initial stress state prevailing in the rock mass prior to the tunnel excavation process is defined by constant
vertical and horizontal geostatic stress 𝜎𝑣 and 𝜎ℎ taking the following form:

𝝈0 = −𝜎𝑣𝒆𝑦 ⊗ 𝒆𝑦 − 𝜎ℎ

(
1 − 𝒆𝑦 ⊗ 𝒆𝑦

)
(6)

d1 2

a)

c)

b)

Figure 1. Geometry, mesh and boundary conditions of domain and details of a) longitudinal tunnel cross-section
for configuration 𝑑1 = 4𝑅𝑡 and gallery cross-section for configurations b) 𝑑1 = 16𝑅𝑡 and c) 𝑑1 = 4𝑅𝑡 .

As mentioned previously, the tunneling process, including the excavation steps and lining installation, is
simulated by resorting to the activation-deactivation method shown in the schematic representation in Fig. 2. Each
excavation step is modeled by deactivation of the corresponding elements (the elements stiffness is reduced by a
factor 1𝐸8), whereas installation of elements of lining at a distance 𝑑0𝑡 from the excavation face (unlined length)
is achieved through activation of the corresponding elements by assigning them concrete properties. In this figure,
𝑛𝑝 is the total number of excavation steps and 𝑛𝑝𝑖𝑔 represents the number of longitudinal tunnel excavation steps
before gallery excavation. After achievement of the 𝑛𝑝𝑖𝑔 excavation steps, the excavation of the gallery is initiated
starting from the longitudinal tunnel wall. Referring to the notation of Fig. 2, 𝐿𝑝𝑔 is the considered step length for
the gallery excavation, and 𝑑0𝑔 is the unlined length of the gallery. After the gallery excavation is completed, we
proceed to further excavation steps of the longitudinal tunnel. The main parameters defining the geometry domain
as well as the excavation process and lining installation are summarized in Table 1.

Section

Longitudinal tunnel

Excavation face

Deactivate elements
Activated elements

Gallery

Direction of excavation

Direction of excavation

Figure 2. Schematic representation of the excavation process.
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Table 1. Parameters related to the geometry of the domain, excavation, and installation of the lining.

PARAMETERS SYMBOL UNIT VALUES
Longitudinal tunnels

Radius of the longitudinal tunnel 𝑅𝑡 m 𝑅𝑡

Thickness of the lining 𝑒𝑡 m 0.1𝑅𝑡 , 0.03𝑅𝑡

Length of the excavation step 𝐿𝑝𝑡 m 1/3𝑅𝑡

Unlined length 𝑑0𝑡 m 2𝐿𝑝𝑡

Gallery
Radius of the gallery 𝑅𝑔 m 2/3𝑅𝑡

Thickness of the lining 𝑒𝑔 m 𝑒𝑡

Length of the excavation step 𝐿𝑝𝑔 m 1/3𝑅𝑔

Unlined length 𝑑0𝑔 m 2𝐿𝑝𝑔

Number of steps that starts gallery excavation 𝑛𝑝𝑖𝑔 un 15
Rest of domain

Distance between longitudinal tunnel axes 𝑑1 m 4𝑅𝑡 , 16𝑅𝑡

Total length along vertical direction 𝒆𝑦 𝑑3 m 20𝑅𝑡

Length of unexcavated region 𝐿1 m 10𝑅𝑡

Total excavated length 𝐿2 m 100𝐿𝑝𝑡

Total length along transversal direction 𝒆𝑥 𝐿3 m 20𝑅𝑡 + 𝑑1/2

4 Verification with unlined twin tunnel in elastoplastic medium

In the context of plane strain conditions, Ma et al. [2] developed an approximate analytical solution for the
stresses and the plastic zone boundary around deep twin circular tunnels excavated in a homogeneous elastoplastic
medium. For the constitutive model, the authors considered perfectly plastic Mohr-Coulomb criterion with asso-
ciated plastic flow rule. The stress solution for twin tunnels was formulated on the premise that the plastic zone
around each tunnel fully encloses the tunnel edge, with the two plastic zones remaining separate and unconnected.

Fig. 3 shows the comparison between the 3D F.E. Solution (from a far behind the excavation face) and the
analytical solution for plastic zone boundary provided in [2]. For these analysis, 𝑅𝑡 = 1 m, 𝑑1/2𝑅𝑡 = 2.5, rock
Young’s modulus 𝐸 = 20 GPa, Poisson’s ratio 𝜈 = 0.3 and, friction angle 𝜙 = 30◦. This analysis shows that finite
element modeling produces predictions very similar with those shown in 3. In addition, the results show that lower
values of cohesion 𝑐 result in larger plastic zones.

Boundary of the plastic zone - Analytical Solution [3]

Plastic zone - 3D F.E. Solution 

Figure 3. The plastic zone extent obtained from the present F.E. simulations and from the stress solution provided
in Ma et al. [2].

Further comparisons are illustrated in Fig. 4, which shows the radial𝜎𝑟𝑟 and orthoradial𝜎𝜃 𝜃 stress components
along three radial paths defined in polar coordinates by 𝜃 = 45◦, 90◦, and 135◦. It is important to note that although
the finite element simulations use the Drucker-Prager yield surface inscribed within the Mohr-Coulomb surface (as
used in the solution by Ma et al. [2], the numerical predictions closely match the analytical stress solution.
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Boundary of the plastic zone - Analytical Soltuion [9]

Plastic zone - 3D F.E. Solution 

3

3

3

3

3

3

3

Figure 4. Distribution of radial and orthoradial stress components along different radial directions: comparison
between numerical and analytical predictions.

5 Numerical Results and Discussion

To develop the analysis, we employed Young’s modulus 𝐸 = 1500 MPa, Poisson ratio 𝜈 = 0.49, 𝑐 = 4
√

3/2,
𝜙 = 0◦ and, isotropic initial stresses 𝜎𝑣 = 𝜎ℎ = 9 MPa, which correspond to the constitutive parameters and
tunneling conditions (450 m depth) in the clay rock mass in the Paris basin (in Aisne, France), as detailed in
Rousset [12], Giraud [13] and, Piepi [14]. For the lining, two stiffness values will be considered: 𝐾𝑐 = 969 MPa
and 𝐾𝑐 = 3403 MPa. Assuming a Young’s modulus 𝐸𝑐 = 30303 MPa and Poisson’s ratio 𝜈𝑐 = 0.2, these values
corresponds to lining thicknesses 𝑒𝑡 of 0.03𝑅𝑡 and 0.1𝑅𝑡 .

Denoting by 𝑢𝑦 the displacement component following the 𝑦-axis, Fig. 5 and Fig. 6 displays the convergence
profile 𝑈𝐵 = −𝑢𝑦 (𝐵)/𝑅𝑡 that characterize the inward movement at the tunnel roof 𝐵(𝑥 = −𝑑1/2, 𝑦 = 𝑅𝑡 , 𝑧) as a
function of normalized longitudinal distance to the facing for different conditions: without lining (NL), with elastic
lining (EL), with (WG) and without gallery (NG) for 𝑑1 = 16𝑅𝑡 and 𝑑1 = 4𝑅𝑡 . In these figures, 𝑈𝐶 represents
convergence at 𝑧/𝑅𝑡 = −25, i.e., far from the influence zone of the excavation face and gallery, and𝑈𝐷 is highlighted
at the position 𝐷 (𝑥 = −𝑑1/2, 𝑦 = 𝑅𝑡 , 𝑧 = 𝐿1 + 𝐿2/2) where the gallery axis intersects the longitudinal tunnel axis.

For the single tunnel, the stiffer lining (black solid line) reduced convergence by approximately 35% compared
to the unlined scenario (black dashed line) whereas this reduction is only 12% for the moderate stiffness lining
(black dotted line).

When 𝑑1 = 16𝑅𝑡 (blue and yellow lines), the results of 𝑈𝐶 are similar to the isolated tunnel (black line).
However, with a distance reduced to 𝑑1 = 4𝑅𝑡 , the interaction between the tunnels becomes significant. Compared
to the convergence of single tunnel, the increase in convergence induced by twin tunnels proximity reaches values
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of 30% for unlined structure, 10% for the moderate stiffness lining and 6.5% for the higher stiffness lining.

Excavation 
face

Figure 5. Convergence Profiles at the tunnel roof (point B) - for 𝑑1 = 16𝑅𝑡 .

Excavation 
face

Figure 6. Convergence Profiles at the tunnel roof (point B) - for 𝑑1 = 4𝑅𝑡 .

When comparing 𝑈𝐶 between twin tunnels with spacings of 16𝑅𝑡 and 4𝑅𝑡 , differences of 6% with higher
stiffness lining (yellow and blue solid lines), 10% with moderate stiffness lining (yellow and blue dotted lines), and
30% without lining (yellow and blue dashed lines) are observed. These results show the direct impact of lining
stiffness and the distance between twin tunnels on𝑈𝐶 convergence.

When analyzing the convergence𝑈𝐷 at the point where the gallery axis intersects the longitudinal tunnel axis,
there is an increase of 16% when using an moderate stiffness lining (blue dotted line) compared to a higher stiffness
lining (blue solid line), for both distances 𝑑1. However, when analyzing the difference between the 𝑈𝐶 and 𝑈𝐷 ,
there is a difference of up to 12% for the higher stiffness lining (blue solid line to 4𝑅𝑡 and 16𝑅𝑡 ) and up to 13% for
the moderate stiffness lining (blue dotted line to 4𝑅𝑡 and 16𝑅𝑡 ) for 𝑑1 = 4𝑅𝑡 . In both figures it can be seen that the
increase in stiffness reduces the extent of the influence zone of the gallery in the longitudinal tunnel convergence
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profile. The range decreases from 22.5𝑅𝑔 (without lining) to 10.5𝑅𝑔 and 7.5𝑅𝑔 (with lining). Additionally, the
proximity of the tunnel has a minimal impact on the length of this influence zone.

6 Conclusions

Considering the constitutive parameters and tunneling conditions adopted, the analyses show that the lining
has a profound impact on the convergence profile of the twin tunnels. It reduces overall convergence by up to 35%
and diminishes the peak convergence due to the gallery by approximately a third compared to unlined scenario.
In addition, a less rigid lining, approximately 3.5 times less stiff, increases convergence by 12% and expands the
gallery influence zone by 40% compared to the stiffer lining. Tunnel interaction becomes significant at 4𝑅𝑡 however
has minimal impact in the range of gallery’s influence zone along the longitudinal tunnel.
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