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Abstract. This study examines the radial displacements of cylindrical panels in contact with the soil (or rock),
approximated here by the Pasternak elastic model. The contact problem is characterized as bilateral due to the
permanent contact situation between the structure and the medium. A simply supported is defined and then sub-
jected to a concentrated load, with the contact system differential equation derivatives approximated by using the
finite difference method (FDM). The cylindrical panel analysis is based on Sanders’ theory, where quadratic terms
are omitted under the assumption that they are negligible for small displacement conditions. This simplification
allows for a more streamlined approach while maintaining accuracy in scenarios where displacements are mini-
mal. Therefore, a Fortran-based computational tool is developed for the analysis of this particular bilateral contact
problem. The results focus on the panel radial is on the panel radial displacements for different meshes, consider-
ing variations in nodal points in different directions. The FDM was efficient and suitable for this contact problem
between the structure and medium, providing a straightforward numerical implementation of the cylindrical shell
and elastic base model theories.

Keywords: bilateral contact problem, finite difference method, Pasternak foundation, cylindrical panel, modified
sanders theory

1 Introduction

The study of contact problems between structures and deformable foundations is crucial in civil engineer-
ing, especially in soil-structure interaction scenarios. Structural elements frequently interact with the ground, as
they are typically constructed on soil or rock formations. Understanding these interactions is vital for ensuring
the stability and safety of structures, as the foundation behavior directly influences the overall performance and
integrity of the structure. This analysis helps in predicting and mitigating potential issues that could arise from the
ground-structure contact. In this context, analyzing structure-foundation systems focuses on the response of soil
or rock to applied loads at the contact region. This involves incorporating the foundation’s reaction into the differ-
ential equations governing problems related to beams, plates, or shells. By integrating these reactions, engineers
can more accurately predict the behavior of structural elements under load, ensuring that both the structure and its
foundation perform optimally under various conditions [1].

The simplest mathematical model to simulate the behavior of soil or rock typically uses only one parameter,
usually representing its stiffness. This behavior is modeled by considering the medium as an elastic, deformable
base that does not respond to tensile forces. The Winkler discrete spring model, distributed in the interaction region
between the structure and the base, is widely used in engineering projects and scientific research. In this model, the
base deflection is assumed to occur exclusively at the point of contact with the structure. On the other hand, when
considering soil as a continuous medium, two-parameter models provide a more accurate representation of the
elastic base’s behavior. These models, like Pasternak’s, account for the interaction between the springs, offering
a more comprehensive and accurate analysis analysis. The primary effect of using these models is to increase the
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overall rigidity of the system, resulting in a more realistic portrayal of the soil-structure interaction [2].
The study of contact between shells/panels and an elastic base focuses on understanding the interaction be-

tween these elements. When the parts remain permanently fixed without losing contact, the problem is character-
ized as bilateral contact problem (BCP) (Figure 1). This scenario ensures continuous contact, affecting the analysis
and behavior of the system under various loading conditions.

q(x, θ)

Deformed
shell

Figure 1. Bilateral contact problem

Cylindrical shells and panels are vital components in various engineering structures, including pipelines,
tanks, cooling towers, silos, containment structures, chimneys, and roofs. In tunnel structures, wells, or buried
pipelines, these shells interact with the surrounding soil or rock. Depending on the situation, the shells may either
support the surrounding medium, be supported by it, or work in tandem with the soil, providing mutual support
and bearing capacity. This interaction plays a critical role in the stability and functionality of the overall structural
system.

The soil-shell contact problem solution is typically achieved through numerical methods, with the finite
element method (FEM) being the most common. Other methods like the boundary element method (BEM), discrete
element method (DEM), and finite difference method (FDM) are also used. This study aims to enhance a Fortran-
based computational tool for the linear analysis of cylindrical shells, originally developed by Silveira [3]. The
focus is on bilateral contact constraints using FDM due to its effectiveness in solving differential equations with
contact restrictions.

In this article, the general mathematical framework is outlined for solving the bilateral contact problems
between cylindrical panels and elastic bases using the finite difference method. Cylindrical panels are used as a
practical application of the general shell equations.

2 Theoretical formulation

2.1 Theory of slender cylindrical shells

The analytical methods used to characterize the behavior of a thin shell under applied loads rely on assump-
tions concerning the shell’s characteristic dimensions, the extent of deflection, and the torsion perpendicular to the
reference surface at each point. To facilitate this, simplified theories make certain assumptions that streamline the
analysis of shell-related problems in the study of deformations on the reference surface. The formulation used is
[4]:

i. The normal stresses acting in the shell radial direction are negligible compared to the other stresses;
ii. Deformations due to transverse shear are neglected; the fibers normal to the undeformed reference surface

remain normal and do not change in length during the deformation process;
iii. The shell is considered slender;
iv. The shell material is homogeneous and exhibits a linear elastic behavior; and
v. The forces acting on the system are conservative.
Sanders (1963) [5] developed expressions for small deformations and moderate to large rotations to enhance

the accuracy of measurements for membrane and bending deformations. These equations fully account for geomet-
ric nonlinearity in the deformation-displacement relationships and are applicable to all shell types. When quadratic
terms are negligible under small displacement conditions, the kinematic relations can be derived as follows:

εx = ∂xu, εθ =
1

R
∂θv +

1

R
w, γxθ =

1

R
(∂θu+R∂xv)−

1

R
(∂x)v, (1)

where εx and εθ are the normal strains and γxθ the shear strain. Displacements in the x and θ directions are
denoted by u an v, respectively, and R is the radius of curvature of the slender shell. Displacement perpendicular
to the surface and oriented in a radial direction is denoted by w. The linear approximations of curvature changes,
concerning the adopted theory, are:
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χx = −∂xxw, χθ =
1

R2
(∂θv − ∂θθw), χxθ = − 1

4R2
∂θu+

3

4R
∂xv −

1

R
∂xθw, (2)

where χx and χθ are the changes of the main lines and χxθ is the twist of the reference surface.
The analysis of static equilibrium conditions involves evaluating the effects of a set of forces on the shell

element under investigation and ensuring equilibrium throughout the structure. The equilibrium differential equa-
tions for this infinitesimal element are derived by summing the forces and moments in the undeformed cylindrical
shell element. The response of the cylindrical shell to specific loads, with bilateral contact constraints imposed by
elastic bases, is considered only in the radial direction w. Given the assumptions of small displacements, elastic
material properties, and specific load types, it is assumed that the equations governing the membrane effects of the
shell have minimal impact on the system’s response and are therefore neglected. For the reference surface of the
cylindrical shells and panels, the equilibrium equation can be written as follows:

C

R2
w +D∇4w = q(x, θ) + rb(x, θ), (3)

where ∇4 is the bilaplacian operator in cylindrical coordinates, q represents the acting lateral pressure and rb
characterizes the reaction of the elastic base. C and D are the membrane and bending stiffnesses, respectively,
defined as:

C =
Et

1− ν2
, D =

Et3

12(1− ν2)
. (4)

where E is the modulus of elasticity and ν is the Poisson’s ratio.

2.2 Elastic foundations

The mathematical model used to represent the foundation varies depending on the specific application, with
determining the contact pressure between components being a key challenge in analyzing the interaction between
the ground and the structure. Common methods for investigating the structural system include numerical modeling
approaches, particularly those that treat the foundation as an elastic medium. Among these, models that use
discrete springs are prevalent. In such models, the behavior of the elastic foundation is represented using (i) a
single parameter, where the soil-structure interaction is modeled with independent discrete springs whose stiffness
is linked to the properties of the elastic foundation material, and (ii) two parameters, which incorporate interactions
between the springs.

The simplest mechanical model was proposed by Winkler in 1867 [6]. In this representation, the pressure
exerted by the base at a given point is directly proportional to deflection on site, i.e.:

rb(x, θ) = kBwb(x, θ) (5)

where kB is the foundation modulus and wb(x, θ) is the deflection. As soil may exhibit considerable interaction
action among its elements, the Winkler springs have inherited deficiency in simulating such behavior. Pasternak
model assumes the existence of shear interactions between the spring elements [7]. Mathematically:

rb(x, θ) = kBwb(x, θ)− kM∇2wb(x, θ) (6)

where the second term on the right-hand side is the effect of the shear interactions of the vertical elements, ∇2 is
the laplacian operator in cylindrical coordinates and kM represents the shear stiffness parameter of the layer. The
two stiffness parameters in the Pasternak model, kB and kM , depend on the physical and mechanical properties
of the elastic foundation and the system’s geometry, being influenced by the constitution of the soil (or elastic
material).

2.3 Approximation of the equilibrium differential equation

The soil-shell equilibrium equation (3) is solved here by the finite difference method. This method promotes
the discretization of space by a mesh of discrete points, with the unknows variable w and its their derivatives being
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replaced by approximations at the points of the grid through difference quotients. Characteristically, for each nodal
point, an algebric equation is obtained.

The process of discretization of space takes into account the organization of the stitched points, thus defining
the mesh of finite differences. Depending on the arrangement imposed, the mesh can be composed of structures of
different shapes, the most common squares, rectangles and triangles, always depending on each specific problem
and methodology used. The cylindrical panel plan is shown in Figure 2 with a rectangular mesh consisting of sides
of length ∆x and R∆θ.
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Figure 2. Planning of cylindrical shell for use in the FDM

The algebraic equation for the pivotal point (i, j), after applying the finite difference approximations in
Equation (3), is expressed as follows (t is the thickness of the cylindrical panel):

[
t2

12(∆x)4

]
(wi−2,j + wi+2,j) +

[
t2

12R4(∆θ)4

]
(wi,j−2 + wi,j+2)+

[
t2

6R2(∆x)2(∆θ)2

]
(wi−1,j−1 + wi+1,j−1 + wi−1,j+1 + wi+1,j+1)+

[
t2

3R4(∆θ)4
+

t2

3R2(∆x)2(∆θ)2

]
[−wi,j−1 − wi,j+1)+

[
t2

3(∆x)4
+

t2

3R2(∆x)2(∆θ)2

]
[−wi−1,j − wi+1,j ] +

[
t2

2(∆x)4
+

2t2

3R2(∆x)2(∆θ)2
+

t2

2R4(∆θ)4
+

1

R2

]
[wi,j ] =

q(x, θ)

C
+

kB (wi,j)− kM

[
1

(∆x)2
(wi+1,j + wi−j,j − 2wi,j) +

1

R2(∆θ)2
(wi,j+1 + wi,j−1 − 2wi,j)

]
.

(7)

3 Numerical Aplications

3.1 Solution strategy

The numerical strategy used in this work for the approximate solution of bilateral contact problems have as
main characteristics:

i. The use of the FDM, which replaces the original domain of the bodies (structure and elastic base) and
their respective contours with a mesh. As a consequence, the algebraic equation system that governs the
PCB is reached;

ii. After this system discretization, the solution of the problem can be directly achieved;
iii. The computer program used for numerical simulation was made in the Fortran 90 language.
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The algorithm adopted in this work for solving the BCP follows the following steps:
1. Data reading: geometric, material and system load properties (shell-base);
2. The finite difference mesh of the system is defined;
3. The external force vector is assembled;
4. The shell stiffness matrix is assembled;
5. The elastic base stiffness matrix is assembled;
6. The structural system stiffness matrix of the structural system is calculated;
7. The boundary conditions are introduced;
8. The algebric equation system is solved;
9. The radial displacement w and the internal forces are calculated;

10. Print the results.

3.2 BCP: panel with concentrated load

Figure 3 shows the cylindrical panel with length L = 12 m and radius R = 24 m, with all four sides simply
supported under a load of q = 106N applied at its central point. The radial displacements w are determined at
the point where the load is applied. The panel analyzed is made of isotropic material, with modulus of elasticity
2.05× 1011 Pa and Poisson’s ratio 0.3. The following thicknesses were adopted and analysed: 0.096 m, 0.192 m,
0.288 m, 0.384 m and 0.480 m. Therefore, the thickness (t) / radius (R) ratio were evaluated and are: 0.4, 0.8, 1.2,
1.6 and 2.0.

q

0.523 rad
R

=
2
4
m

t

q

L = 12mCylindrical

Panel

Membrane

Elastic

Base

kM

kB

Figure 3. Cylindrical panel based on elastic base - bilateral contact

For the Pasternak-type base, the first parameter kB assumed the values 106 N/m3, 107 N/m3 and 108 N/m3.
The second parameter kM assumed the values 106 N/m, 107 N/m and 108 N/m. The kB/kM ratios analyzed are
shown in Table 1. Additionally, the same panels on an elastic foundation with one parameter (kM = 0), Winkler
model, and without no base (kB = 0 and kM = 0) were considered. For the application of the FDM and for each
direction (x and θ), the following number of nodal points was adopted: 11, 21, 31, 41, 51, totaling 25 meshes.

Table 1. kB/kM ratios analyzed

kB(N/m3) 106 106 106 107 107 107 108 108 108

kM (N/m) 106 107 108 106 107 108 106 107 108

kB/kM (m−2) 1 0.1 0.01 10 1 0.1 100 10 1

Table 2 compares, for the different thicknesses and values of kB and kM , and for the different types of contact,
the average values w at the panels center point radial displacement, with the standard deviations σ associated. All
values are given in meters. The effective gain in rigidity provided by the use of Pasternak-type bases can be noted
as the panels become less slender, mainly for the higher values of kB and kM .

Considering the meshes with the same variation of nodal points in the two directions already considered
(11,21,31,41,51), the displacements at the point of application of the load were determined. Figures 4a and 4b
illustrate the behavior of radial displacements, as presented in Table 1, for kB = 106 N/m3 and kB = 108 N/m3,
respectively. Similarly, Figures 5a and 5b show the radial displacement behavior for kM = 106 N/m and kM =
108 N/m. The values kB = 107 N/m3 and kM = 107 N/m were omitted, as their behavior was similar to that
observed for kB = 106 N/m3 and kM = 106 N/m, for the corresponding standard deviations. In both cases, there
is a similar behavior for the gain in stiffness. The effective gain in rigidity provided by the use of Pasternak-type
base can be noted as the panels become less slender. Convergence is observed for different contact situations as
the slenderness of the cylindrical panel decreases.

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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Table 2. Mean values and associated standard deviations for different thicknesses

kM (N/m)

0 106 107 108

t/R(%) kB(N/m3) w σ w σ w σ w σ

0.4

0 0.0567 0.0019

106 0.0560 0.0019 0.0550 0.0018 0.0480 0.0026 0.0247 0.0026

107 0.0505 0.0016 0.0497 0.0016 0.0438 0.0023 0.0234 0.0025

108 0.0296 0.0011 0.0293 0.0012 0.0271 0.0016 0.0171 0.0019

0.8

0 0.0069 0.0003

106 0.0069 0.0003 0.0069 0.0003 0.0066 0.0002 0.0050 0.0004

107 0.0065 0.0002 0.0065 0.0002 0.0063 0.0002 0.0048 0.0003

108 0.0046 0.0002 0.0046 0.0002 0.0045 0.0002 0.0037 0.0002

1.2

0 0.0020 0.0001

106 0.0020 0.0001 0.0020 0.0001 0.0020 0.0001 0.0017 0.0001

107 0.0019 0.0001 0.0019 0.0001 0.0019 0.0001 0.0017 0.0001

108 0.0015 0.0001 0.0015 0.0001 0.0015 0.0001 0.0013 0.0001

1.6

0 0.0009 0.0000

106 0.0009 0.0000 0.0009 0.0000 0.0008 0.0000 0.0008 0.0000

107 0.0008 0.0000 0.0008 0.0000 0.0008 0.0000 0.0008 0.0000

108 0.0007 0.0000 0.0007 0.0000 0.0007 0.0000 0.0006 0.0000

2.0

0 0.0004 0.0000

106 0.0004 0.0000 0.0004 0.0000 0.0004 0.0000 0.0004 0.0000

107 0.0004 0.0000 0.0004 0.0000 0.0004 0.0000 0.0004 0.0000

108 0.0004 0.0000 0.0004 0.0000 0.0004 0.0000 0.0003 0.0000

As the panel thickness increases, the stiffness gain offered by the two-parameter base model effectively
reduces the disturbance caused by boundary conditions. As expected, for high values of the thickness/radius ratio,
there is a large increase in stiffness, characterized by a decrease in radial displacement.

(a) (b)

Figure 4. Radial displacements w evaluated at the load application point for different kB values
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(a) (b)

Figure 5. Radial displacements w evaluated at the load application point for different kM values

4 Conclusions

A computational tool for the study and analysis of problems involving cylindrical panels with bilateral contact
restrictions imposed by elastic bases was developed. This numerical study considered the FDM for discretization of
the use of the FDM as a tool for discretion of the continuum, transforming the differential equations of both the shell
and soil models into algebraic equations. The FDM presented efficiency in discretization of the medium-structure
contact problem, with ease implementation of both cylindrical shell theory and also elastic foundation models.
Therefore, it can be considered a good alternative to other numerical methods to solve this king of interation
problem, mainly for this particular soil-structure interative problem. The evaluation of the Winkler and Pasternak
models highlighted the differences in base behavior when subject to varying stiffness parameters and thickness.
This analysis provided insight into how changes in stiffness influence the interaction between the structure and its
foundation, with each model offering distinct responses to these variations.
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