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Abstract. Submarine mudflows, frequently triggered by underwater landslides, lead to substantial debris accumu-
lation stretching over kilometers once the landslide subsides, posing significant risks to vital infrastructure and the
potential for triggering tsunamis. As these events are challenging to measure directly, simulation becomes imper-
ative. Furthermore, these simulations must accurately depict the intricate dynamics of mudflow sliding processes,
often modeled as viscoplastic fluids, and effectively captured by rheological models like Herschel-Bulkley and
Bingham. The potential nonlinearity inherent in the Herschel-Bulkley model adds to the complexity of predict-
ing final runout distances. The governing equations, comprised of a set of partial differential equations, further
compound this challenge, making their solution difficult. In this paper, we delve into the numerical simulation
of mudflows using the Depth-Averaged Method (DAM), a technique that streamlines the governing equations by
integrating the momentum and continuity equations over the depth dimension. The mud descends down a slope
with a fixed angle of declination. Using a finite difference scheme to solve the governing equations, we validated
our numerical model against experimental data of a Bingham mudflow, achieving good agreement. A sensitivity
analysis was conducted by varying the temporal and spatial discretization in a submarine mudflow. Root Mean
Squared Error (RMSE) computations demonstrated that finer discretization yields more accurate simulations, while
coarser discretization increases errors. However, good results can still be achieved with a careful selection of both
parameters.
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1 Introduction

Debris flow is one of the gravity-driven downslope processes that transport sediment onto the seabed [1].
Characterized by plastic rheology and steady flow dynamics, debris flow can occur in both subaerial and submarine
environments. These flows can consist of various sediment sizes, including fine particles (muddy debris flows),
coarser particles (sandy debris flows), or a combination of both [2].

Subaerial mudflows, often triggered by intense rainfall in mountainous regions, have the potential to dramat-
ically reshape the landscape and inflict significant harm on wildlife and human communities in the surrounding
areas [3]. Equally important are submarine muddy debris flows, which have the capacity to transport vast quantities
of sediment, often amounting to thousands of cubic kilometers [4]. These submarine mudflows pose significant
hazards, including the potential to trigger tsunamis and damage underwater infrastructure such as oil and gas
pipelines and subsea internet cables [5].

Accurate understanding and prediction of the physical processes of both submarine and subaerial mudflows
are crucial for mitigating the risks associated with geohazard-induced destruction. However, monitoring and mea-
suring these mudflows present significant challenges due to their brief duration, infrequent occurrence and unpre-
dictable nature. To address these challenges, controlled laboratory environments are used to study these complex
flow phenomena [5, 6]. In parallel, researchers have developed simulations of submarine and subaerial muddy de-
bris flow dynamics by leveraging data from field investigations and laboratory experiments. These efforts involve
the application of analytical models [3, 7] and numerical models [8–11].

Numerical simulations of mudflows require methods that can accurately predict runout distances, morphol-
ogy, and account for plastic rheological models. Most simulations use the Bingham and Herschel-Bulkley models
[3, 7, 12]. The possible nonlinearity of the plastic model adds complexity to solving the governing partial differ-
ential equations, making the selection of an appropriate numerical method challenging.
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Researchers frequently use the Depth-Averaged Method (DAM) for simulating mudflow movement with
the Herschel-Bulkley and Bingham models due to its efficiency in predicting runout distances and final debris flow
morphology while minimizing computational effort. The DAM approach relies on boundary layer approximations,
assuming that the mud thickness is small compared to its length [13]. It simplifies the governing equations by
integrating the momentum and continuity equations over the depth dimension, a technique formerly known as
von Kármán’s momentum integral method. This integration simplifies the problem to either a one-dimensional
computation (in the case of 2D simulations) or a two-dimensional computation (for 3D simulations), enhancing
the computational efficiency of the DAM.

Despite its efficiency, the DAM can still introduce errors due to the inherent complexity of debris flow dy-
namics, especially in submarine environments. Simplifications in the governing equations may lead to inaccuracies
depending on the specific simulation conditions and rheological parameters used.

In this paper, we applied the Depth-Averaged Method, solved with a finite difference scheme, with the Bing-
ham model to simulate submarine mudflows. We began by validating our numerical results against experimental
data from Ghahramani-Wright. Following this, we performed a sensitivity analysis based on Huang and Garcı́a’s
analytical model of a hypothetical submarine slide. This analysis examined how variations in the simulation pa-
rameters - specifically the spatial and temporal discretization of the model - affect the final runout distance and
morphology of the mudflows.

2 Depth-Averaged Method (DAM)

Presenting the formulation of DAM using the Herschel-Bulkley model offers greater convenience and flexi-
bility, as it includes the Bingham model as a special case. Moreover, it accounts for shear thinning, where viscosity
decreases gradually with increasing shear rate, a behavior commonly observed in many mudflows experiments [7].
In simple shear, the stress-strain relationship for a Herschel-Bulkley fluid in laminar flow is:

µn
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)
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, (1)

in which, τ is the shear stress, τy is the yield stress, µn indicates the dynamic viscosity of dimension
[
M T (n−2)

L

]
and the flow index n varies from 0 to 1 [7]. The strain rate is defined as ∂u/∂y, where u is the longitudinal velocity
(parallel to the bed). The Bingham plastic fluid equation is obtained by considering n = 1 in equation eq. (1).

We consider a two-dimensional flow where the flow depth is relatively small compared to the downslope flow
length, and the flow characteristics vary gradually along the longitudinal direction. These conditions are consistent
with boundary layer approximations. Additionally, the analysis assumes equilibrium conditions, meaning that no
erosion or deposition takes place.

The coordinate system is defined with the x-axis oriented along the downslope flow direction and the y-axis
perpendicular to the bed plane, which is inclined at an angle θ relative to the horizontal. The longitudinal and
transversal velocity components are denoted by u and v, respectively; p represents the pressure; and h = hs + hp

denotes the total flow depth normal to the bed, as illustrated in Fig. 1.
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Figure 1. Illustration of a two-dimensional submarine mudflow descending a slope with angle θ. The diagram
highlights two distinct zones: the shear region, where velocity transitions from 0 to Up, and the plug region, where
the velocity remains constant at Up.
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As depicted in Fig. 1, using a Herschel-Bulkley rheological model (and consequently for the Bingham model)
results in two distinct zones: a shear flow region, where the shear stress exceeds the yield stress τ ≥ τy and
the longitudinal velocity u varies from 0 to the plug velocity Up, along the direction perpendicular to the bed
(0 ≤ y ≤ hs); and a plug flow region, where the shear stress is below the yield stress (τ < τy) and the velocity
u = Up is uniform (hs ≤ y ≤ hs + hp).

The governing equations, based on the previously stated boundary layer approximation assumptions, are as
follows [14]:

ρ2
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∂u
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= −∂p
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where, ρ2 is the bulk density of the mud and g is the gravity acceleration. For the case of an unsteady and
nonuniform (velocity varying with space and time), laminar flow, the y-momentum term from eq. (2) and the water
pressure boundary condition, p (x, y = h) = ρ1ghw cos θ, are used to approximate the pressure as hydrostatic:

p (x, y, t) = ρ2g (hs (x, t) + hp (x, t)− y) cos θ + ρ1ghw (x, t) cos θ, (3)

in which ρ1 is the density of the water and hw is the water depth. By incorporating the pressure term from eq. (3)
into the x-momentum term of eq. (2), we obtain the x-axis momentum equation for a submarine landslide [14]:
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where g′ = g · (ρ2 − ρ1) /ρ2. Note that all of the equations reduce to those for subaerial flows if ρ1 = 0.
Rather than solving the boundary-value problem directly, we begin by assuming a plausible velocity profile

for the longitudinal velocity across the mud depth. For this, we selected the profile from the steady, uniform flow
case, which satisfies all boundary conditions. Using this assumed profile, we integrate the momentum equation
over the depth. This approach, known as von Kármán’s momentum integral method in boundary layer theory, is
commonly employed due to the complexity of obtaining exact solutions, particularly in scenarios involving more
than simple steady flow over a flat bed with zero inclination.

Integrating the momentum equations across the mud depth results in differential equations for the shear flow
region, the plug flow region, and the entire mud depth, with the unknowns Up and h. The differential equations for
the plug flow region and the entire flow region are presented below:
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The parameters α in eq. (5) are defined as follows:

α1Uphs =
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0

u dy =
n+ 1

2n+ 1
and α2U

2
phs =
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0

u2 dy =
2 (n+ 1)

2

(2n+ 1) (3n+ 2)
(6)

Based on the solutions provided by Savage and Hutter and Imran et al., we solve the preceding equations
using a finite difference scheme by discretizing the mud into multiple column elements. Here, we present the
forward difference method with first-order accuracy for the governing equations of the Herschel-Bulkley model.
These equations can be adapted to the Bingham model by selecting appropriate values for α1 and α2. Using the
material derivative definition [16] and applying the forward difference, we determine the plug velocity Up and the
averaged velocity U for a column element at time step t+∆t as follows:
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These equations provide solutions for the average velocity U and the plug velocity Up, applicable to both
Herschel-Bulkley and Bingham models. Finally, we want to highlight that a well-known application of the DAM
is the BING software, developed by Imran et al. Initially programmed in Visual Basic, this software has since been
expanded with various extensions [9, 10]. In this study, we have ported and customized BING to Python to better
support our analysis.

3 Numerical Simulations

Observing submarine mudflows is challenging due to the location’s inherent difficulties and the unpredictable
nature of the events. Therefore, we initially validated our numerical adapted model by following the approach of
Huang and Garcı́a (1997) and Imran et al., using the experimental data from Ghahramani-Wright’s study of a
subaerial Bingham mudflow. In this study, mudflows were analyzed in a rectangular glass flume with an upstream
reservoir measuring 1.8 meters in length. The reservoir was filled with bentonite slurry, and an instantaneous dam
break was simulated by releasing a vertical sliding gate at its downstream end. One of the experimental simulations
was conducted under the following conditions: initial mud length L of 1.8m, initial mud height h of 0.3m, yield
strength τy of 42.5Pa, dynamic viscosity µ of 0.22Pa/s, Herschel-Bulkley exponent n = 1 (representing a
Bingham fluid), ambient fluid density ρ1 of 1 kg/m3, and mud density ρ2 of 1073 kg/m3. The bed profile had a
constant slope of 3.43 degrees. The initial debris length of 1.8m was divided into 20 column cells, each measuring
0.09m, and a time step of ∆t = 6.88 · 10−5 seconds was used.

Figure 2(a) presents the surface profiles at t = 4.1 s, comparing experimental measurements with simulations
from both BING by Imran et al. and our adapted model. As observed, our simulation aligns closely with the
laboratory measurements and matches exactly with the results from BING, as expected. However, the final runout
distance is slightly greater than what was measured. Additionally, the mudflow is obstructed from moving left due
to the back wall of the reservoir in the laboratory setup. Nonetheless, the simulation accurately represents the flow
depth, which is approximately 0.05m.

(a) Comparison between experimental data by Ghahramani-Wright,
BING simulation (cyan line) and our simulation (red line) at t = 4.1 s.

(b) Initial profile of submarine mudflow alongside the final results
from Huang and Garcı́a’s analytical model at t = 2.5min.

Figure 2. Comparison of our simulation with experimental data and BING simulation results at t = 4.1 s (left), and
the initial profile and final results of submarine mudflow based on Huang and Garcı́a’s analytical model (right).

To study submarine mudflows, we based our research on Huang and Garcı́a’s (1999) analytical model results
of a hypothetical submarine mudflow, which used parameters derived from field observations of subaerial mudflow
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properties described by O’Brien and Julien (Fig. 2(b)). We focused on examining the simulation parameters and
conducted a sensitivity analysis to compare our results with their findings. The initial mud mass distribution is
triangular, with a horizontal base and a vertical side oriented downslope, as illustrated in Fig. 2(b).

The simulation parameters are as follows: the initial mud height is 7.25m with an initial length of 207.6m, a
mud density of ρ2 = 2000 kg/m3, and a water density of ρ1 = 1000 kg/m3. The yield stress is τy = 200Pa, the
dynamic viscosity is µ = 10Pa/s and the flow index n = 1 to consider the Bingham model. The bed slope angle
is always 2 degrees with respect to the horizontal, and the final simulation morphology is analyzed at t = 2.5min
(Fig. 2(b)). We varied the spatial discretization dx of the column elements of the mud mass from 0.5m to 10.5m
in increments of 1m, and the temporal discretization, time step dt, of the simulation from 0.0005 s to 0.105 s in
increments of 0.0010 s, resulting in a total of 121 simulations generated by the combination of these parameters.

For each simulation, we compared the final runout distance and morphology results with those of Huang and
Garcı́a. We calculated the absolute error for each node by determining the minimum distance to the reference curve
and then computed the Root Mean Squared Error (RMSE) for each of the 121 simulations.

Figure 3. Details of computation of the Root Mean Squared Error (RMSE) for the simulation with dx = 10.5m
and dt = 0.0015 s, resulting in a RMSE of 0.090 at t = 2.5min.

Figure 3 illustrates the computation of the RMSE for the simulation with dx = 10.5m and dt = 0.0015 s. It
shows the absolute error, representing the distance to the curve, computed for all 21 nodes, which resulted in an
RMSE value of 0.090 for this simulation. Using this approach, we first conducted an analysis of the influence of
spatial discretization on the final results at t = 2.5min. By fixing the time step at dt = 0.0005 s and varying dx,
we were able to investigate how different levels of spatial resolution affected the accuracy of our simulation. The
results of this investigation are presented in Fig. 4(a), highlighting the relationship between discretization and the
resultant RMSE values.

(a) RMSE values for dt = 0.0005 s and varying dx. (b) RMSE values for dx = 9.5m and varying dt.

Figure 4. Impact of spatial and temporal discretization on RMSE values.
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In Fig. 4(a), we can observe a general trend where smaller spatial discretization dx values correspond to
lower RMSE values. Specifically, from dx = 0.5m to dx = 5.5m, there is a noticeable increase in RMSE.
However, beyond this point, we notice an unexpected reduction in RMSE, before observing a significant increase
again at dx = 10.5m, where the RMSE value reaches 0.162. This indicates that the relationship between spatial
discretization and RMSE can be influenced by other factors in the simulation setup. Continuing with this approach,
we fixed dx = 9.5m and varied the time step dt. The results of this analysis are presented in Fig. 4(b), which show
that smaller dt values correspond to lower RMSE values. However, after reaching a certain dt, the error stabilizes,
despite being already high. This suggests that while finer temporal resolution improves accuracy initially, beyond
a certain point, further increasing dt does not drastically increase the error. Thus, it is essential to find a balance
where dt is small enough to maintain accuracy but not unnecessarily fine, ensuring computational efficiency. By
comparing the two results in Fig. 4, we can better understand the trade-offs between spatial and temporal resolution
in optimizing simulation accuracy.

A comprehensive investigation was conducted, and the RMSE values for all 121 simulations are presented.
However, it is important to note that some simulations did not complete successfully, particularly those with dx =
0.5m and larger time steps. Additionally, some simulations produced completely erroneous results, resulting in
high RMSE values. This is illustrated in Fig. 5(a), where a heatmap shows the RMSE values, with dx on the x-axis
and dt on the y-axis. The presence of strong red spots indicates simulations that failed, leading to exceptionally
huge RMSE values.

In most cases, the solution remains stable if the time step is sufficiently small. Stability can be ensured by
applying the Courant–Friedrichs–Lewy (CFL) condition, CFL = a · dt/dx ≥ 1, where a is the wave speed. We
adapted the CFL condition and computed a disarable dt using the generalized formula k

√
dx/g, with k = 0.005,

dx being the initial grid size, and g representing the gravitational acceleration. This approach, similar to that used
by Imran et al., is employed because calculating wave speed directly for submarine debris flows is challenging due
to varying conditions and complex interactions. This generalized form based on g and dx provides a practical and
reliable stability condition, and our tests confirmed that k = 0.005 is a valid value.

In Fig. 5(a), we also computed those potential stable dt using the previously mentioned formula and overlaid
this with the heatmap. A clear pattern emerges: above the line representing stable dts, we observe strong red spots,
indicating that instability occurred due to excessively large time steps. This visualization highlights the critical
importance of adhering to the stability condition to prevent simulation errors.

(a) Heatmap of RMSE values for all simulations, with RMSE repre-
sented by color. Desirable stable time steps computed with the adapted
CFL condition are also indicated.

(b) Regression surface showing the relationship between dx, dt, and
RMSE. The distances between simulation points and the surface are
highlighted.

Figure 5. Analysis of RMSE values across different spatial and temporal discretizations.

The unstable cases were removed to allow for a clearer analysis of RMSE trends through a surface regression
in a 3D graph, where RMSE is the z-axis (Fig. 5(b)). The surface was approximated by a third-degree polynomial,
resulting in an R2 value of 0.81, with the residuals well-distributed along the zero line of the adjusted residuals
chart. This result supports our previous discussions: large (dx, dt) values lead to higher errors, and smaller (dx, dt)
values lead to lower errors, with an intermediary region exhibiting reasonable RMSE values. Therefore, it is crucial
to carefully consider the trade-offs between accuracy and computational cost when selecting these parameters.
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4 Conclusions

Our study validated a numerical model using experimental data and investigated the effects of spatial and
temporal discretization on the accuracy of submarine mudflow simulations through the computation of RMSE.
We found that finer discretizations generally yield lower RMSE values, while larger ones increase errors. Many
simulations failed because the CFL condition was not met, highlighting the importance of adhering to this stability
criterion. These findings emphasize the need to balance the choice of dx and dt to achieve acceptable accuracy.
Future work should integrate computational cost into the selection of dx and dt, considering the trade-offs between
accuracy and efficiency.
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