

CILAMCE-2024

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Maceió, Brazil, November 11-14, 2024

Applications of the Circle-Inspired Optimization Algorithm (CIOA):

comparison between MatLab and Python versions

Otávio A. P. de Souza1, Letícia F. F. Miguel2

1Postgraduate Program in Civil Engineering (PPGEC), Federal University of Rio Grande do Sul (UFRGS)

Av. Osvaldo Aranha, 99, 90035-190, Porto Alegre/Rio Grande do Sul, Brazil

otavio.peter@hotmail.com
2Dept. of Mechanical Engineering (DEMEC), Postgraduate Program in Mechanical Engineering (PROMEC),

Postgraduate Program in Civil Engineering (PPGEC), Federal University of Rio Grande do Sul (UFGRS)

Av. Sarmento Leite, 425, 90050, Porto Alegre/Rio Grande do Sul, Brazil

letffm@ufrgs.br

Abstract. This paper presents new applications of the Circle-Inspired Optimization Algorithm (CIOA), a modern

and efficient optimization algorithm developed by the authors, in optimization problems implemented in MatLab

and Python, with the aim of making a comparison between the version of the algorithm in each computational

language. Thus, different types of optimization problems were implemented and solved multiple times in both

versions of the CIOA (MatLab and Python), evaluating the best solution, the average among all solutions, the

standard deviation, and computational time. The results demonstrate the efficiency of CIOA in both computational

languages. In terms of precision and robustness, it was not possible to determine which language performed better,

as the differences obtained were small, probably due to the random characteristics of the algorithm. However, in

relation to computational time, the MatLab version presented better performance. This advantage can be explained

due to the libraries used and the authors' experience in each programming language.

Keywords: Circle-Inspired Optimization Algorithm, MatLab, Python.

1 Introduction

Metaheuristic algorithms are efficient tools for solving challenging optimization problems. Over the last few

decades, many metaheuristic algorithms have been developed, the most famous of which can be cited: Particle

Swarm Optimization (PSO), developed by Kennedy and Eberhart [1]; Differential Evolution (DE), developed by

Storn and Price [2]; Harmony Search (HS), created by Geem et al. [3]; Firefly Algorithm, implemented by Yang

[4]; Search Group Algorithm (SGA), developed by Gonçalves et al. [5]; Whale Optimization Algorithm (WOA),

created by Mirjalili and Lewis [6]; Butterfly Optimization Algorithm (BOA), developed by Arora and Singh [7].

In this context, the Circle-Inspired Optimization Algorithm (CIOA) was developed by the authors (Souza [8]

and Souza and Miguel [9]) with the promise of being a very efficient metaheuristic algorithm to solve engineering

optimization problems. Some applications of the CIOA can be cited, such as the work of Mahato et al. [10] and

Miguel e Souza [11], in engineering studies. Uses of the algorithm in other areas of research are also found, such

as the work of Salim and Sarath [12], who developed an adaptation inspired by CIOA to use it in cancer studies.

CIOA was initially developed and published solely in the MatLab computational language, as were most of

the algorithms mentioned above. However, the increasing use of other computational languages, particularly

Python in the engineering field, motivated the implementation of CIOA in this language as well. Currently, two

versions of CIOA are available: one in MatLab and one in Python.

Therefore, the main objective of this paper is to apply the CIOA to different optimization problems and, as a

Applications of the Circle-Inspired Optimization Algorithm: comparison between MatLab and Python versions

CILAMCE-2024

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Brazil, November 11-14, 2024

novel contribution, to compare the efficiency of the versions implemented in MatLab and Python. Thus, this paper

is organized as follows: the first section provides a brief introduction to the work; the second section consists of a

summary of the CIOA formulation; the third section describes the optimization problems to which CIOA was

applied, with the aim of comparing the versions in different computer languages; in the fourth section, results are

presented and discussed; and the fifth section highlights the conclusions.

2 Formulation of the Circle-Inspired Optimization Algorithm (CIOA)

The Circle-Inspired Optimization Algorithm (CIOA) is an optimization algorithm developed by the authors

(Souza [8] and Souza and Miguel [9]), in which each search agent moves through circular arcs with a radius 𝑟.

The better the value of the objective function obtained by a given search agent, the smaller the radius 𝑟 used in the

movement of this agent in the next iteration. The formulation of the CIOA is presented below.

Considering 𝑁𝑎𝑔 the number of search agents and 𝐿𝑏 and 𝑈𝑏 the lower and upper limits, respectively, of each

variable of design, a vector of radii 𝑟 is generated, where the value of each element 𝑟𝑗 of this vector is calculated

according to Equations (1), where 𝑐𝑟 is a constant.

 𝑟𝑗 = 
𝑐𝑟𝑗²

𝑁𝑎𝑔
 and 𝑐𝑟 = 

√𝑈𝑏−𝐿𝑏

𝑁𝑎𝑔
 (1)

After initialization, the first solution generated by CIOA is random. In subsequent iterations, the solutions

obtained are classified, so that the search agent that produced the 𝑗𝑡ℎ best solution in an iteration 𝑘 will have its

coordinates updated in iteration 𝑘 + 1 through Equations (2) and (3), in which the indices 2𝑖 and 2𝑖−1 of the

coordinates (or design variables) refer to even and odd numbers, respectively. 𝑟𝑎𝑛𝑑 variables refer to random

numbers drawn from a uniform distribution between zero and one.

 𝑥2𝑖(𝑘 + 1) =  𝑥2𝑖(𝑘) − 𝑟𝑎𝑛𝑑1𝑟𝑗 sin(𝑘𝜃) + 𝑟𝑎𝑛𝑑2𝑟𝑗 sin((𝑘 + 1)𝜃) (2)

 𝑥2𝑖−1(𝑘 + 1) = 𝑥2𝑖−1(𝑘) − 𝑟𝑎𝑛𝑑3𝑟𝑗 cos(𝑘𝜃) + 𝑟𝑎𝑛𝑑4𝑟𝑗 cos((𝑘 + 1)𝜃) (3)

To schematize the movement of search agents in CIOA, it is assumed that in an iteration a search agent moves

from point 1 to point 2, in a movement governed by angle 𝜃 and radius 𝑟1,2 with center at 𝑂1,2. In the subsequent

iteration, the search agent moves from point 2 to point 3, the movement is governed by the same angle 𝜃 but now

by the radius 𝑟2,3 with center at 𝑂2,3. This procedure is presented in Figure 1 for two different situations: in the

first (Figure 1.a), the search agent improves the classification of its solution, thus, its new movement will be made

with a smaller radius (𝑟2,3 < 𝑟1,2); in the second (Figure 1.b), the classification of the agent's solution worsens, so

its subsequent movement will be governed by a larger radius (𝑟2,3 > 𝑟1,2).

Figure 1. Changing the radius and updating the circle center.

Whenever a search agent causes the variable 𝑥𝑖 to assume a coordinate outside the variable boundary, its

value will be updated to the coordinate generated by the best-classified search agent in this iteration. If the variable

boundaries are exceeded by the best agent, the values will be updated to 𝐿𝑏 or 𝑈𝑏. Whenever the agents complete

a “circle”, that is, when 𝑘𝜃 exceeds a multiple of 360º, the radius vector will be updated according to the Equation

𝑟𝑛𝑒𝑤 = 𝑟. 𝑟𝑢𝑝, where 𝑟𝑛𝑒𝑤 is the new radius vector, and 𝑟𝑢𝑝 is an update coefficient, usually set at 𝑟𝑢𝑝 = 0.99.

To introduce an exclusively local search step into the algorithm, a parameter called 𝐺𝑙𝑜𝑏𝐼𝑡 is defined, which

can assume values in the range (0, 1], to be defined by the user. This way, the exclusively local search will start

Otávio A. P. de Souza, Letícia F. F. Miguel

CILAMCE-2024

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Brazil, November 11-14, 2024

in iteration 𝑘 when the proportion between 𝑘 and the total number of iterations assumes values greater than 𝐺𝑙𝑜𝑏𝐼𝑡 .

At this point, all search agents of the CIOA are restarted, starting from the coordinates that generated the best

solution until the current iteration. Furthermore, an update of the design variable boundaries is carried out,

according to Equations (4), so that the new lower and upper bound values, respectively 𝐿𝑏1𝑖 and 𝑈𝑏1𝑖
, for each

design variable 𝑥𝑖, data will be given as a function of the old limits (𝐿𝑏 and 𝑈𝑏) and the variable 𝑥𝑖𝑏𝑒𝑠𝑡 , which is

the variable of dimension 𝑖 that produced the best solution to date.

 𝐿𝑏1𝑖 = 𝑥𝑖𝑏𝑒𝑠𝑡 −
𝑈𝑏−𝐿𝑏

10000
 and 𝑈𝑏1𝑖

= 𝑥𝑖𝑏𝑒𝑠𝑡 +
𝑈𝑏−𝐿𝑏

10000
 (4)

Once initialized, this step of the algorithm is governed by the same equations presented previously (Equations

(3)), now restricting the search space delimited by 𝐿𝑏1𝑖 and 𝑈𝑏1𝑖. In specific cases where 𝐿𝑏1𝑖 < 𝐿𝑏 or 𝑈𝑏1𝑖 > 𝑈𝑏,

whenever after updating a design variable, its value is in the ranges 𝐿𝑏1𝑖 < 𝑥𝑖 < 𝐿𝑏 or 𝑈𝑏1𝑖 > 𝑥𝑖 > 𝑈𝑏, the value

of this variable will be updated to, respectively, 𝑥𝑖 = 𝐿𝑏 or 𝑥𝑖 = 𝑈𝑏.

The CIOA pseudocode is presented in Figure 2. For better functioning of the algorithm, a non-multiple of

360º should be defined for 𝜃 and a value in the range between 0.75 and 0.95 for the 𝐺𝑙𝑜𝑏𝐼𝑡 parameter. More

information about the formulation and implementation of the algorithm, as well as validation and efficiency tests

where CIOA is compared with other famous algorithms, can be seen in Souza [8] and in Souza and Miguel [9].

Begin

 Define 𝜃 and 𝐺𝑙𝑜𝑏𝐼𝑡
 Initialize a radii vector 𝑟

 Assign random values to design variables and evaluate the objective function for each search agent

 while1 (𝑘 ≤ 𝐺𝑙𝑜𝑏𝐼𝑡 × Maximum number of iterations)

 Classify search agents according to the quality of the solution obtained and update your positions

 Verify if any design variable exceeds the imposed boundaries

 if (𝑘 is a multiple of the value rounded down to 360 𝜃⁄)

 Update vector 𝑟

 end if

 end while1

 Reset all search agents with the position that generated the best solution so far

 Update design variable bounds

 while2 (𝑘 ≤ Maximum number of iterations)

 Repeat the procedures described in while1 using the updated design variable bounds

 end while2

 Results visualization

End

Figure 2. Pseudocode of the CIOA.

3 Algorithm Configuration and Optimization Problems

This section presents the optimization problems that were solved using CIOA. These problems are separated

into three different categories: Benchmark Functions, Real-World Problems, and Truss Optimization Problems.

The CIOA parameters were configured as 𝜃 = 17° and 𝐺𝑙𝑜𝑏𝐼𝑡 = 0.85. All problems were implemented and solved

on the same computing platform: Windows 10, 8th generation Core i5 processor, and 8 GB of memory. MATLAB

R2015a (8.5.0) and Jupyter Notebook 6.1.4 (Anaconda 3) were used. The parameters compared in each problem

are the best solution, mean of solutions, standard deviation, and computational time.

3.1 Benchmark functions

The first set of optimization problems solved by CIOA consists of 20 benchmark functions known in the

literature. Details of each function can be found in Mirjalili and Lewis [6]. In this paper, functions 𝑓1 through 𝑓7

are unimodal while the functions 𝑓8 through 𝑓11 are multimodal. These functions correspond to functions with the

same numbering (i.e., 𝑓1 to 𝑓11) in Mirjalili and Lewis [6]. Functions 𝑓12 through 𝑓20 in this paper are multimodal

with fixed dimensions and correspond to the functions 𝑓15 through 𝑓23 in Mirjalili and Lewis [6]. For both versions

Applications of the Circle-Inspired Optimization Algorithm: comparison between MatLab and Python versions

CILAMCE-2024

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Brazil, November 11-14, 2024

of CIOA, each function was solved 51 times, using 800 iterations and 250 search agents, totaling 200,000

evaluations of the objective function. The results are presented in the results chapter.

3.2 Real-world optimization problems

The second set of problems solved by CIOA consists of ten real-world problems that are part of a package of

optimization problems used in the 'CEC2020 Real-World One-Objective Constrained Optimization Competition'

and available in Kumar et al. [13]. The ten optimization problems analyzed in this paper, referred 𝑅1 to 𝑅10, are:

Weight minimization of a speed reducer, Optimal design of industrial refrigeration system, Tension/compression

spring design (case 1), Pressure vessel design, Welded beam design, Multiple disk clutch brake design problem,

Planetary gear train design optimization problem, Step-cone pulley problem, Gear train design problem and

Himmelblau’s function. Each version of CIOA solved each real-world problem 51 times, using 400 iterations and

250 search agents, totaling 100,000 objective function evaluations, except for problem 𝑅2 which, due to the greater

number of design variables, required 800 iterations and 250 search agents, totaling 200,000 evaluations.

3.3 Truss structural optimization problems

In this subsection, four truss structural optimization problems solved by CIOA are presented in Table 1. More

details about the implementation of these problems can be found in Souza [8], Souza and Miguel [9], and Miguel

and Fadel Miguel [14, 15]. In Table 1, 𝑛 refers to the number of design variables and 𝑔 to the number of inequality

constraints. The numbers of research agents (𝑁𝑎𝑔), iterations (𝑁𝑖𝑡) and objective function evaluations (𝑁𝑒𝑣) used

in each problem are also presented. Each problem was run 20 times on both versions of CIOA.

Table 1. Truss structural optimization problems.

 Name 𝑛 𝑔 𝑁𝑎𝑔 𝑁𝑖𝑡 𝑁𝑒𝑣

𝑆1 Size optimization of a 25-bar space truss with stress and

displacement constraints

8 124 250 800 200,000

𝑆2 Shape and size optimization of an 18-bar plane truss with stress

and buckling constraints

12 54 250 1,600 400,000

𝑆3 Shape and size optimization of a 52-bar space truss with natural

frequency constraints

13 2 250 2,400 600,000

𝑆4 Size optimization of a realistic transmission tower of 163-bar

with stress, displacement, buckling, and fundamental natural

frequency constraints

11 810 250 800 200,000

4 Results

This section presents the results obtained for the optimization problems described in Section 3.

4.1 Results for benchmark functions

Table 2 presents the results generated by each version of CIOA in optimizing the benchmark functions

mentioned in Section 3.1. For each parameter evaluated, the version of CIOA that generated the best result is

highlighted in bold. For the best solution, MatLab performed better in 9 functions, while CIOA in Python

performed better in 11 functions. For the mean solution and standard deviation, MatLab was more efficient in 8

functions, while Python was more efficient in 12 functions. In problems ranging from 𝑓13 to 𝑓20, the same result

was apparently obtained by both versions in some of the parameters; however, this occurs only due to the rounding

used to present the results. In these problems, some differences are present in the 7th or 8th decimal place.

The results of the mean solution are also compared with those results obtained by Mirjalili and Lewis [6],

who used the Whale Optimization Algorithm (WOA0 in MatLab, to validate the analyzes in the present work. In

11 functions, both versions of the CIOA generated better results than those reported by Mirjalili and Lewis [6].

Otávio A. P. de Souza, Letícia F. F. Miguel

CILAMCE-2024

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Brazil, November 11-14, 2024

Table 2. Results for benchmark functions.

 Results obtained in this paper [6]

 Best solution Mean Solution Std. deviation Time (s) Mean Sol.

 Mat Py Mat Py Mat Pyt Mat Py WOA

𝑓1 2.77E-08 3.27E-08 1.01E-07 9.72E-08 2.92E-08 2.36E-08 3.45 15.95 1.41E-30

𝑓2 2.74E-05 4.90E-05 1.77E-04 6.53E-03 1.30E-04 3.49E-03 3.20 10.23 1.06E-21

𝑓3 1.23E-05 1.46E-07 8.63E-05 1.57E-06 4.37E-05 2.54E-06 7.71 19.12 5.39E-07

𝑓4 1.43E-04 1.88E-04 2.80E-04 3.80E-04 6.36E-05 1.58E-04 4.77 13.61 7.26E-02

𝑓5 5.48E-03 5.83E-01 2.84E+00 3.97E+00 1.74E+00 1.07E+00 3.32 10.63 2.79E+01

𝑓6 6.67E-10 6.64E-10 4.29E-09 2.76E-09 3.31E-09 1.22E-09 3.07 10.12 3.11E+00

𝑓7 4.47E-04 9.21E-04 1.26E-03 4.69E-03 4.25E-04 1.41E-03 4.97 14.55 1.43E-03

𝑓8 -3834.51 -3775.28 -3371.78 -3372.80 144.7817 148.7372 4.91 13.93 -5080.76

𝑓9 1.61E-06 9.96E-01 3.38E-01 3.65E+00 4.68E-01 9.03E-01 3.27 10.58 0

𝑓10 1.62E-04 1.32E-04 2.29E-04 5.69E-04 2.86E-05 5.36E-04 4.96 16.26 7.40E+00

𝑓11 1.41E-07 4.84E-08 6.29E-07 3.70E-03 6.63E-07 3.43E-03 3.42 14.08 2.89E-04

𝑓12 3.07E-04 3.07E-04 3.16E-04 3.32E-04 6.05E-06 2.05E-05 3.59 7.51 5.72E-04

𝑓13 -1.03163 -1.03163 -1.03163 -1.03163 2.09E-12 1.70E-12 2.74 5.11 -1.03163

𝑓14 0.39789 0.39789 0.39789 0.39789 9.90E-13 8.26E-13 2.79 5.79 0.39791

𝑓15 3.00000 3.00000 3.00000 3.00000 6.30E-11 4.89E-11 2.72 6.61 3.00000

𝑓16 -3.86278 -3.86278 -3.86278 -3.86278 1.15E-10 5.74E-11 4.15 12.60 -3.85616

𝑓17 -3.32200 -3.32200 -3.32200 -3.32200 2.92E-09 6.53E-10 4.75 12.17 -2.98105

𝑓18 -10.1532 -10.1532 -10.1532 -10.1532 5.67E-09 5.25E-09 4.67 9.92 -7.04918

𝑓19 -10.4029 -10.4029 -10.4029 -10.4029 5.89E-09 5.47E-09 5.07 11.10 -8.18178

𝑓20 -10.5364 -10.5364 -10.5364 -10.5364 5.60E-09 5.04E-09 5.84 12.87 -9.34238

Regarding computational time, CIOA in MatLab demonstrated the best performance in all functions,

requiring approximately 37% of the time needed for Python to solve the same function. The use of certain libraries,

such as numpy (in Python) and the authors' greater experience in programming in MatLab, could justify this

difference. It is also important to highlight that the Python version of CIOA is an adaptation of the initial version,

in MatLab. Therefore, certain performance-enhancing features available in Python may not have been utilized to

keep the code as similar as possible to the original MatLab implementation.

4.2 Results for real-world optimization problems

The results for the real-world optimization problems can be seen in Table 3, where they are further compared

with those obtained by Sallam et al. [16] who used the Multi-Operator Differential Evolution (MODE) algorithm.

Table 3. Results for real-world problems.

 Results obtained in this paper [16]

 Best solution Mean solution Std. deviation Time (s) Best

 MatLab Python MatLab Python MatLab Python MatLab Python MODE

𝑅1 2994.62 2994.69 2994.94 2994.90 1.48E-01 1.22E-01 2.29 8.47 2994.4

𝑅2 0.07165 0.13171 0.16705 0.24925 4.44E-02 6.93E-02 6.54 24.62 0.0322

𝑅3 0.01267 0,01267 0.01271 0,01270 3.19E-05 3,26E-05 1.46 3.29 0.0127

𝑅4 6059.71 6047.37 6094.32 6080.33 7.50E+01 1.59E+01 1.71 3.86 6059.7

𝑅5 1.67091 1.67334 1.68085 1.68453 4.72E-03 5.78E-03 1.78 6.49 1.6702

𝑅6 0.23524 0.23524 0.23524 0.23524 6.36E-07 5.09E-07 1.96 7.02 0.2352

𝑅7 0.52325 0.52325 0.52878 0.52953 2.27E-03 1.93E-03 3.46 18.37 0.5258

𝑅8 16.1118 16.1064 16.2354 16.2203 5.81E-02 5.14E-02 2.13 11.99 16.070

𝑅9 0 0 0 0 0.00E+00 0.00E+00 1.41 4.43 0

𝑅10 -30664.2 -30662.3 -30654.6 -30645.5 5.24E+00 7.14E+00 1.64 6.12 -30666

Regarding the best solution, the MatLab version of the CIOA performed better in 5 problems, while the

Applications of the Circle-Inspired Optimization Algorithm: comparison between MatLab and Python versions

CILAMCE-2024

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Brazil, November 11-14, 2024

Python version performed better in 3. In two problems, both versions achieved the same result. For the mean

solution and standard deviation, the MatLab and Python presented the best performance in 4 and 5 problems,

respectively, while in 1 problem they demonstrated the same performance. In terms of computational time, the

MatLab showed the best performance in all problems, requiring approximately 29% of the time used by Python.

Finally, the results obtained in this work are very similar to those reported by Sallam et al. [16].

4.3 Results for truss structural optimization problems

Table 4 presents the results obtained by CIOA in structural optimization problems for trusses. For the best

and the mean solutions, MatLab performed better in 3 problems, while Python performed better in only 1.

Conversely, for the standard deviation, MatLab was better in 1 problem and Python in 3. Regarding computational

time, CIOA in MatLab demonstrated the best performance in all analyses, requiring approximately 29% of the

time used by Python. The results for the best solution are compared with those obtained by Miguel and Fadel

Miguel [15] using the Firefly Algorithm (FA). It is noted that CIOA achieved better results in two problems.

Table 4. Results for truss structural optimization problems.

 Results obtained in this paper [15]

 Best Solution Mean Solution Std deviation Time (s) Best Sol.

 MatLab Python MatLab Python MatLab Python Matlab Python FA

𝑆1 247.29 247.26 247.37 247.32 0.0615 0.0424 87.38 263.49 247.31

𝑆2 2075.4 2097.3 2163.0 2185.1 44.246 38.360 251.37 846.02 2058.8

𝑆3 195.43 196.15 197.96 198.79 1.7364 1.4015 586.04 3325.21 193.99

𝑆4 17471.7 17488.3 17509.3 17516.6 23.809 24.459 2401.7 6915.39 17557.5

4.4 Statistical Kruskal-Wallis Test

Finally, a statistical analysis using the Kruskal-Wallis Test is performed considering the results of the 51

independent simulations carried out for each benchmark function and real-world problem in each version of CIOA.

The results obtained for the 𝐻 statistic and p-value at a significance 𝛼 = 0.05 are presented in Table 5.

Table 5. Statistical analyzes

Type 𝑓 or 𝑅 𝐻 𝑝-value Win 𝑓 or 𝑅 𝐻 𝑝-value Win

 𝑓1 1.13 0.29 = 𝒇𝟏𝟏 33.864 0 M

 𝒇𝟐 49.337 0 M 𝒇𝟏𝟐 11.719 0.0006 M

 𝒇𝟑 75.757 0 P 𝑓13 2.359 0.1245 =

 𝒇𝟒 20.621 0 M 𝑓14 3.832 0.0503 =

Benchmark 𝒇𝟓 7.977 0.0047 M 𝒇𝟏𝟓 5.331 0.0209 P

Functions 𝒇𝟔 5.254 0.0219 P 𝒇𝟏𝟔 8.417 0.0037 P

 𝒇𝟕 70.004 0 M 𝒇𝟏𝟕 16.777 0 P

 𝑓8 0.015 0.9041 = 𝑓18 0.312 0.5763 =

 𝒇𝟗 74.135 0 M 𝑓19 0.484 0.4864 =

 𝒇𝟏𝟎 7.920 0.0049 M 𝑓20 0.223 0.6370 =

 𝑅1 2.755 0.0970 = 𝑅6 14.835 0.0001 P

Real-world 𝑅2 31.268 0 M 𝑅7 3.780 0.0519 =

Problems 𝑅3 0.598 0.4390 = 𝑅8 1.643 0.2000 =

 𝑅4 0.884 0.3470 = 𝑅9 0 1 =

 𝑅5 10.043 0.0015 M 𝑅10 34.569 0 M

Whenever 𝑝-value > 0.05, it means that the null hypothesis cannot be rejected. In this case, the results

generated by the simulations of each version of the algorithm are obtained from the same distribution, making it

impossible to determine which version is better. When the 𝑝-value < 0.05, the null hypothesis is rejected, indicating

that the analyzed data are from different distributions. In these cases, highlighted in bold in Table 5, one version

Otávio A. P. de Souza, Letícia F. F. Miguel

CILAMCE-2024

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Brazil, November 11-14, 2024

of the algorithm is statistically better. Thus, in the "Win" column, "M" is used to indicate cases where MatLab

performed better (11 functions or problems), and "P" is used for problems where Python performed better (6

functions or problems). It is important to highlight that the statistical analyzes considered values up to the 16th

decimal place, therefore, many of the observed differences may be attributed to floating-point arithmetic.

5 Conclusions

This paper presented new applications of the Circle-Inspired Optimization Algorithm (CIOA) to complex

optimization problems and presents, for the first time, a comparison between its MatLab and Python versions. The

results show that CIOA performs efficiently in both computational languages. Performance differences are

statistically significant only beyond a certain decimal precision, suggesting they are due to algorithmic randomness

or floating-point arithmetic. MatLab consistently outperforms Python in terms of computational time, likely due

to the libraries used and the authors' programming experience. As future work, it is suggested to implement CIOA

in object-oriented Python in addition to adapting it to multi-objective optimization problems.

Acknowledgements. The authors acknowledge the financial support of CNPq.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the

authorship of this work, and that all material that has been herein included as part of the present paper is either the

property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1] J. Kennedy and R. Eberhart. “Particle Swarm Optimization”. Proceedings of ICNN'95 - International Conference on Neural

Networks, pp.1942-1948.

[2] R. Storn and K. Price. “Differential Evolution – A simple and efficient heuristic for global optimization over continuous

spaces”. Journal of Global Optimization, vol. 11, n. 4, pp. 341-359, 1997.

[3] Z. W. Geem, J. H. Kim and G. V. Loganathan. “A new heuristic optimization: Harmony Search”. Simulation, vol. 76, n. 2,

pp. 60-68, 2001.

[4] X-S. Yang, “Firefly algorithms for multimodal optimization”. In: O. Watanabe e T Zeugmann (eds.), Fifth International

Symposium on Stochastic Algorithms, pp. 169-178.

[5] M. S. Gonçalves, R. H Lopez and L. F. Fadel Miguel. “Search group algorithm: A new metaheuristic method for the

optimization of truss structures”. International Journal Computers & Structures, vol. 153, pp. 165-184, 2015.

[6] S. Mirjalili and A. Lewis. “The whale optimization algorithm”. International Journal Advances of Engineering Software,

vol. 95, pp. 51-57, 2016.

[7] S. Arora and S. Singh. “Butterfly optimization algorithm: a novel approach for global optimization”. Soft Computing, v. 23,

n. 3, pp. 715-734, 2019.

[8] O. A. P. Souza. Elaboração de um algoritmo de otimização aplicado à engenharia estrutural: Circle-Inspired Optimization

Algorithm. Masters dissertation, Federal University of Rio Grande do Sul, 2021.

[9] O. A. P. Souza and L. F. F. Miguel. “CIOA: Circle-Inspired Optimization Algorithm, an algorithm for engineering

optimization”. SoftwareX, v. 19, pp. 101192, 2022.

[10] D. Mahato, V. K. Aharwal and A. Sinha. “Electric Vehicle Charge Scheduling Based on Circle-Inspired Optimization

Algorithm”. In: G. Rajakumar, KL. Du, Á. Rocha (eds.), Intelligent Communication Technologies and Virtual Mobile

Networks. (ICICV 2023), pp. 539-558.

[11] L. F. F. Miguel and O. A. P Souza. “Robust optimum design of MTMD for control of footbridges subjected to human-

induced vibrations via the CIOA”. Structural Engineering and Mechanics, vol. 86, n. 5, pp. 647-661, 2023.

[12] S. Salim and R. Sarath. “Breast cancer detection and classification using histopathological images based on optimization-

enabled deep learning”. Biomedical Engineering: Applications, Basis and Communications, vol. 36, n. 1, 2023.

[13] A. Kumar, G. Wu, M. Z. Ali, R. Mallipeddi, P. N. Suganthan and S. Das. “A test-suite of non-convex constrained

optimization problems from the real-world and some baseline results”. Swarm and Evolutionary Computation, vol. 56, pp.

100693, 2020.

[14] L. F. F. Miguel and L. F. F. Miguel. “Shape and size optimization of truss structures considering dynamic constraints

trough modern metaheuristics algorithms”. Expert Systems with Applications, vol. 39, pp. 9458-9467, 2012.

[15] L. F. F. Miguel and L. F. F. Miguel. “Assessment of modern metaheuristic algorithms – HS, ABC and FA – in shape and

size optimisation of structures with different types of constraints”. Int. J. Metaheuristics, vol. 2, n. 3, pp. 256-293, 2013.

[16] K. M. Sallam, S. M. Elsayed, R. K. Chakrabortty and M. J. Ryan. “Multi-Operator Differential Evolution Algorithm for

Solving Real-World Constrained Optimization Problems.” Proceedings of Congress on Evolutionary Computation, 2020,

pp.1-8.

